polynomdivision < Klassen 5-7 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:40 Fr 11.11.2005 | Autor: | bjoern88 |
[mm] (a^3-b^3):(a+b)=?
[/mm]
Mir ist nicht klar wie ich dieses Bsp rechnen kann entweder durch eine polynomdivision oder durch zerlegung und anschliessendes kürzen? hab beides probiert und werde nicht schlüssig.
Bitte um detailierten rechenvorgang wenn möglich beide rechnungsarten, danke!!
Verzeiht mir bitte das exponentzeichen ^, da ich keine ahnung hab wie Ich an es anders schreiben kann.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo bjoern88,
> [mm](a^3-b^3):(a+b)=?[/mm]
>
> Mir ist nicht klar wie ich dieses Bsp rechnen kann entweder
> durch eine polynomdivision oder durch zerlegung und
> anschliessendes kürzen? hab beides probiert und werde nicht
> schlüssig.
> Bitte um detailierten rechenvorgang wenn möglich beide
> rechnungsarten, danke!!
Ich denke, du solltest hier beide Methoden (mehrmals) anwenden, um zur Lösung zu kommen.
Es gilt:
[mm] $a^n [/mm] - [mm] b^n [/mm] = [mm] \left(a-b\right)\sum_{i=1}^{n}{a^{n-i}b^{i-1}}$
[/mm]
Ich weiß leider nicht, wie man das allgemein beweist (sicherlich über vollständige Induktion), denke aber, daß der Beweis für eine solch allgemeine Formel im Internet zu finden sein müßte.
Für $n = 3$ gilt also:
[mm] $a^3 [/mm] - [mm] b^3 [/mm] = [mm] \left(a-b\right)\sum_{i=1}^{3}{a^{3-i}b^{i-1}} [/mm] = [mm] \left(a-b\right)\left(a^{3-1}b^{1-1} + a^{3-2}b^{2-1} + a^{3-3}b^{3-1}\right) [/mm] = [mm] \left(a-b\right)\left(a^2 + ab + b^2\right)$
[/mm]
Jetzt führen wir folgende Polynomdivision durch:
[Dateianhang nicht öffentlich]
Wir erhalten die Gleichung:
[mm] $\left(a - b\right)\left(a + \frac{b^2}{a + b}\right) [/mm] = [mm] a^2 [/mm] + [mm] \frac{ab^2}{a+b} [/mm] - ab - [mm] \frac{b^3}{a+b} [/mm] = [mm] a^2 [/mm] - ab + [mm] \frac{ab^2-b^3}{a+b}$
[/mm]
Der letzte Summand verführt Einen zu einer weiteren Polynomdivision.
[Dateianhang nicht öffentlich]
Den neuen Term eingesetzt erhalten wir:
[mm] $\frac{a^3-b^3}{a+b} [/mm] = [mm] a^2 [/mm] - ab + [mm] b^2 [/mm] - [mm] \frac{2b^3}{a+b}$
[/mm]
Grüße
Karl
Dateianhänge: Anhang Nr. 1 (Typ: gif) [nicht öffentlich] Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:04 Sa 12.11.2005 | Autor: | bjoern88 |
[mm] (a^3-b^3):(a+b)=
[/mm]
[mm] (a-b):(a^2-ab+b^2):(a+b)
[/mm]
Ich habe nun verstanden das der erste ausdruck zerlegt der zweite ist und ich anschließend weiterrechnen kann aber weshalb kann ich nicht schon den ersten ausdruck durch eine polynomdivision lösen?
Sollte es möglich sein bitte ich um eine detailierte lösung denn ich komme bei der division nicht auf [mm] a^2-ab+b^2-2b^3:(a+b)
[/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:30 Sa 12.11.2005 | Autor: | leduart |
Hallo
> [mm](a^3-b^3):(a+b)=[/mm]
>
> [mm](a-b):(a^2-ab+b^2):(a+b)[/mm]
>
> Ich habe nun verstanden das der erste ausdruck zerlegt der
> zweite ist und ich anschließend weiterrechnen kann aber
> weshalb kann ich nicht schon den ersten ausdruck durch eine
> polynomdivision lösen?
Natürlich kannst du direkt dividieren. und das ist auch genauso schnell wie erst (a-b) auszuklammern!
> Sollte es möglich sein bitte ich um eine detailierte
> lösung denn ich komme bei der division nicht auf
> [mm]a^2-ab+b^2-2b^3:(a+b)[/mm]
Wenn du nich drauf kommst machst du nen Fehler, also schreib Deine Rechnung auf, und wir suchen gemeinsam. Da die Division garantiert nicht aufgeht, vermut ich allerdings wie Loddar, dass du eigentlich durch (a-b) teilen solltest. denn die Division durch (a+b) macht nicht viel Sinn, da am Ende doch wieder [mm] -2b^{3}/(a+b) [/mm] bleibt.
Also schreib uns deine Division falls es wirklich die ist und wir suchen den Fehler.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:51 Sa 12.11.2005 | Autor: | Karl_Pech |
Hallo bjoern88,
> [mm](a^3-b^3):(a+b)=[/mm]
>
> [mm](a-b):(a^2-ab+b^2):(a+b)[/mm]
>
> Ich habe nun verstanden das der erste ausdruck zerlegt der
> zweite ist und ich anschließend weiterrechnen kann aber
> weshalb kann ich nicht schon den ersten ausdruck durch eine
> polynomdivision lösen?
> Sollte es möglich sein bitte ich um eine detailierte
> lösung denn ich komme bei der division nicht auf
> [mm]a^2-ab+b^2-2b^3:(a+b)[/mm]
Das du nicht auf die benötigte Form gekommen bist, ist ja nicht weiter schlimm, denn wenn Du deine Rechenschritte hier postest, könnten wir deine Fehler korrigieren. Sonst wissen wir nicht, wie weit Du schon gekommen bist. Nur als Anhaltspunkt: Die Polynomdivision, die Du haben willst, benötigt nur 3 Rechenschritte, ist aber im Gegensatz zum ersten Ansatz ein wenig unübersichtlicher(und damit für einen Menschen fehleranfälliger ).
Außerdem wäre es schön, wenn Du uns gleichzeitig deine Aufgabenstellung bestätigen könntest:
Durch was soll also geteilt werden? a+b oder a-b?
Grüße
Karl
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:44 Fr 11.11.2005 | Autor: | Loddar |
Hallo Björn,
!!
Hast Du die Aufgabenstellung auch richtig abgeschrieben?
Oder meinst Du hier nicht eher: [mm] $\left(a^3-b^3\right) [/mm] \ : \ (a \ [mm] \red{-} [/mm] \ b)$ ??
Gruß
Loddar
|
|
|
|