matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrapolynom faktorisierbar ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - polynom faktorisierbar ?
polynom faktorisierbar ? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynom faktorisierbar ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 So 26.10.2008
Autor: andreas1983

Aufgabe
sei g(x) element von Z[X] und habe in diesem ring teiler, d.h. ist darstellbar als
s(x)*g(x) mit s(x),g(x) element von Z[X]. g(x) habe grad n.

1.dann gilt:o.E. grad(t(x)) <=(1/2)*n
2.seien [mm] z_1,...,z_0 [/mm] paarw.versch. ganze Zahlen, welche werte kann dann [mm] t(z_i) [/mm] nur annhemen?

1. ist trivial, ich bitte um einen tipp bei 2. denn man kann damit anscheinend folgern dass g(x) in endlich vielen schritten faktorisierbar ist (als hinweis steht hier lagrange-interpolation).ferner kann ich-wenn ichs dann wüsste- bei einer anderen aufgabe dies auf konkrete polynome und ihre eventuelle zerlegung anwenden.
d.h. das zieht nen ziehmlichen rattenschwanz nach sich...

        
Bezug
polynom faktorisierbar ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 So 26.10.2008
Autor: andreas1983

ich habe die frage in keinem anderen forum gestellt.

Bezug
        
Bezug
polynom faktorisierbar ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:28 Mo 27.10.2008
Autor: felixf

Hallo

> sei g(x) element von Z[X] und habe in diesem ring teiler,
> d.h. ist darstellbar als
>  s(x)*g(x) mit s(x),g(x) element von Z[X]. g(x) habe grad
> n.

Zwei der vier $g(x)$ sollen $t(x)$ sein, oder?

>  
> 1.dann gilt:o.E. grad(t(x)) <=(1/2)*n
>  2.seien [mm]z_1,...,z_0[/mm] paarw.versch. ganze Zahlen, welche
> werte kann dann [mm]t(z_i)[/mm] nur annhemen?

Wieviele Werte sind das? Nur [mm] $z_1$ [/mm] und [mm] $z_0$? [/mm] Oder noch mehr?

Ein Tipp: [mm] $t(z_i)$ [/mm] muss natuerlich [mm] $g(z_i)$ [/mm] teilen. Vielleicht hilft dir das ja weiter...

>  1. ist trivial, ich bitte um einen tipp bei 2. denn man
> kann damit anscheinend folgern dass g(x) in endlich vielen
> schritten faktorisierbar ist (als hinweis steht hier
> lagrange-interpolation).

Wie meinst du das mit ``in endlich vielen Schritten faktorisierbar''?

LG Felix


Bezug
                
Bezug
polynom faktorisierbar ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Mo 27.10.2008
Autor: andreas1983

sorry es muss natürlich heißen [mm] z_1 [/mm] bis [mm] z_m [/mm] und dann i element {1,...,m} .

mit faktorisierbar usw. meinte ich dass man dann prüfen kann ob das polynom reduizel ist und falls ja, dass man das produkt als welches das ausgangspolynom darstellbar ist sukzesive errechnen kann...

grüße

Bezug
        
Bezug
polynom faktorisierbar ?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mo 27.10.2008
Autor: statler

Hi!

> sei g(x) element von Z[X] und habe in diesem ring teiler,
> d.h. ist darstellbar als
>  s(x)*t(x) mit s(x),t(x) element von Z[X]. g(x) habe grad
> n.
>  
> 1.dann gilt:o.E. grad(t(x)) <=(1/2)*n
>  2.seien [mm]z_1,...,z_m[/mm] paarw.versch. ganze Zahlen, welche
> werte kann dann [mm]t(z_i)[/mm] nur annehmen?
>  1. ist trivial, ich bitte um einen tipp bei 2. denn man
> kann damit anscheinend folgern dass g(x) in endlich vielen
> schritten faktorisierbar ist (als hinweis steht hier
> lagrange-interpolation).ferner kann ich-wenn ichs dann
> wüsste- bei einer anderen aufgabe dies auf konkrete
> polynome und ihre eventuelle zerlegung anwenden.
>  d.h. das zieht nen ziehmlichen rattenschwanz nach sich...

Da t(x)|g(x) in [mm] \IZ[x] [/mm] gilt, gilt auch [mm] t(z_i)|g(z_i) [/mm] in [mm] \IZ. g(z_i) [/mm] hat aber für jedes i nur endlich viele Teiler. Also gibt es für die [mm] t(z_i) [/mm] nur endlich viele Möglichkeiten. Für jedes mögliche m-Tupel [mm] (z_1, [/mm] ... , [mm] z_m) [/mm] kannst du mittels Interpolation ein [mm] t_{z_1,...,z_m}(x) [/mm] bestimmen, das diese Werte annimmt, und dann prüfen, ob es g(x) teilt.

Bsp.: g(x) = [mm] x^4 [/mm] + [mm] x^3 [/mm] + 1, [mm] z_1 [/mm] = -1, [mm] z_2 [/mm] = 0, [mm] z_3 [/mm] = 1;
[mm] g(z_1) [/mm] = 1, [mm] g(z_2) [/mm] = 1, [mm] g(z_3) [/mm] = 3.
Also fange ich mal an mit
t(-1) = -1, t(0) = -1, t(1) = -3
und weiter (lexikographisch)
t(-1) = -1, t(0) = -1, t(1) = -1
t(-1) = -1, t(0) = -1, t(1) = 1
t(-1) = -1, t(0) = -1, t(1) = 3
...

Das Verfahren geht angeblich auf Frobenius zurück und ist natürlich einerseits mühsam, andererseits aber programmierbar.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]