matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigespolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - polynom
polynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynom: aufgabe1
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 19.07.2008
Autor: marie11

Aufgabe
Geben sie jeweils ein Polynom [mm] p\in [/mm] R[x] an mit:
a) p(0)=1, p(1)=3,p(2)=2, p(-1)=1,p(2)=-1

wie geht das?

        
Bezug
polynom: Polynom
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 19.07.2008
Autor: clwoe

Hi,

du musst doch nur ein Polynom aufstellen, welches die Vorschrift erfüllt.

Ich gebe dir mal die erste an, den Rest schaffst du sicherlich alleine.

Also, es soll gelten: p(0)=1

p: x+1=1

0+1=1 also ist die Bedingung erfüllt. Es gäbe hier noch unendlich viele andere Möglichkeiten aber das ist halt das einfachste.

Gruß,
clwoe


Bezug
                
Bezug
polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:13 So 20.07.2008
Autor: angela.h.b.

Hallo,

so ist das nicht gemeint.

Es soll ein Polynom gefunden werden, welches all diese Bedingungen gleichzeitig erfüllt.

Gruß v. Angela

Bezug
        
Bezug
polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 So 20.07.2008
Autor: angela.h.b.


> Geben sie jeweils ein Polynom [mm]p\in[/mm] R[x] an mit:
>  a) p(0)=1, p(1)=3,p(2)=2, p(-1)=1,p(2)=-1
>  
> wie geht das?

Hallo,

Du hast hier 5 Polynom-Punkte angegeben, und Du weißt sicher, daß hierdurch ein Polynom vom Grad 4 eindeutig bestimmt ist.

Es gibt also [mm] p(x)=ax^4+bx³+cx²+dx+e, [/mm] welches die Bedingungen erfüllt.

Die Koeffizienten findet Du durch Lösung des aus den angegebenen Punkten gegebenen Gleichungssystems.

Damit hast Du dann das kleinste Polynom, welches die Bedingungen erfüllt - natürlich gibt es noch viele andere höheren Grades.

Gruß v. Angela



Bezug
                
Bezug
polynom: Polynom
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 So 20.07.2008
Autor: clwoe

Hallo,

ich dachte mir schon, das das so nicht stimmen kann, aber da steht ja auch "jeweils" ein Polynom.

Sorry!

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]