matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenphysik. + math. Pendel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - physik. + math. Pendel
physik. + math. Pendel < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

physik. + math. Pendel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:19 So 11.06.2006
Autor: VHN

Aufgabe
Betrachte die DGLen
(P) x´´ = [mm] -\alpha^{2}sinx [/mm]   und
(M) x´´ = [mm] -\alpha^{2}x [/mm]  
des physikalischen und mathematischen Pendels zu einer geeigneten Konstanten [mm] \alpha [/mm] > 0:
(a) Zeige: für jedes [mm] \varepsilon [/mm] > 0 ist die maximale Lösung [mm] u_{ \varepsilon} [/mm] von (P) zur Anfangsbedingung x(0) = 0, x´(0) =  [mm] \varepsilon\alpha [/mm] auf ganz [mm] \IR [/mm] definiert. Bestimme außerdem die max. Lösung [mm] v_{ \varepsilon} [/mm] von M zur selben anfangsbedingung.
(b) Beweise die folgende Präzisierung der aussage "bei kleinen auslenkungen kann (P) duch (M) ersetzt werden": Für  alle t [mm] \in \IR [/mm] ist
[mm] |u_{ \varepsilon}(t)-v_{ \varepsilon}(t)| \le e^{(1\vee\alpha^{2}) |t|}|t| \bruch{\alpha^{2}\varepsilon^{3}}{6}. [/mm]

verwende dabei ohne beweis folgende abschätzung:
[mm] |x-sinx|\le|\bruch{x^{3}}{6}| [/mm] für x [mm] \in \IR [/mm]

hallo liebes forum!

ich blicke bei der aufgabe nicht ganz durch.
wie zeige ich bei der (a), dass die lösung von (P) auf ganz [mm] \IR [/mm] definiert ist?
und kaönnt ihr mir bitte nur einen kleinen tipp geben, wie ich die max. lösung von (M) rauskriege?
bei der (b) weiß ich nicht, wie ich überhaupt diese abschätzung verwenden kann. muss ich dazu beide maximale lösungen von (M) und (P) haben?

ich hoffe, ihr könnt mir weiterhelfen. ich tu mich bisschen schwer bei solchen aufgaben. vielen dank!

VHN

        
Bezug
physik. + math. Pendel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 15.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]