permutationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:26 Do 21.01.2010 | Autor: | simplify |
Aufgabe | Man zeige: Die Untergruppe [mm] A_{n} [/mm] aller geraden Permutationen von [mm] S_{n} [/mm] besitzt die Ordnung [mm] \bruch{n!}{2}.
[/mm]
Hinweis: Man finde bijektive Abbildung
[mm] \phi [/mm] : [mm] A_{n} \rightarrow s_{n} \backslash A_{n} [/mm] = [mm] \{\pi \in S_{n} | \pi \not\in A_{n}\} [/mm] |
hallo,
ich versuche gerade zu verstehen,was dort steht.das klappt so halbwegs,aber mir ist nicht ganz klar wie ich auf die ordnung kommen soll.
wieso hab ich denn fakultät im zähler?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:52 Do 21.01.2010 | Autor: | etoxxl |
Ihr habt sicherlich diesen Satz gehabt, bevor ihr die Aufgabe bekommen habt:
Die Anzahl der Permutationen in einer Symmetrischen Gruppe ist [mm] |S_n|=n!
[/mm]
für [mm] n\ge2 [/mm] gilt [mm] |S_n| [/mm] ist durch 2 teilbar, da n! = n*...*2*1
Ich nehme an, ihr habt gerade und ungerade Permutationen definiert.
Du musst nun zeigen, dass die Menge der gerade Permutationen genauso gross ist wie die Menge der ungeraden Permutationen.
Zwei gleichmächtige Mengen sind bijektiv.
Wenn du also eine Bijektion zeigen kannst, hast du bewiesen, dass es genauso viele gerade wie ungerade Permutationen in [mm] S_n [/mm] gibt.
Da die Menge [mm] S_n [/mm] nur aus geraden und ungeraden Permutationen besteht und du gezeigt hast, dass diese gleichmächtig sind, kannst du folgern
dass jede einzelne von ihnen die Mächtigkeit [mm] |S_n|/2 [/mm] = n! / 2 hat.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:55 Sa 23.01.2010 | Autor: | simplify |
also ich hab paar aussagen gefunden und versuche sie mal zusammen zu führen.
[mm] A_{n} [/mm] enthält alle geraden permutationen, die Produkt einer geraden anzahl von transpositionen sind.
das produkt zweier solcher permutationen wieder eine produkt einer geraden anzahl von transpositionen ist.
für jede permutation [mm] \pi \in S_{n}\backslash A_{n} [/mm] gilt [mm] S_{n}=A_{n} \cup \pi A_{n}, [/mm] wobei [mm] \pi A_{n}:= [/mm] { [mm] \pi [/mm] a | [mm] a\in A_{n} [/mm] } ist.
eine beliebige permutation [mm] \phi \in S_{n} [/mm] liegt also in [mm] A_{n} [/mm] oder [mm] \pi A_{n}.
[/mm]
man kann o.B.d.A. annhemen,dass [mm] \phi [/mm] nicht in [mm] A_{n} [/mm] liegt. also ist eine ungerade permutation.
da [mm] \pi [/mm] und [mm] \pi^{-1} [/mm] ungerade permutationen sind, ist [mm] \pi^{-1}\phi [/mm] ein produkt zweier ungeraden permutationen,also eine gerade permutation.
[mm] \pi^{-1}\phi \in A_{n}, [/mm] somit gibt es ein a [mm] \in A_{n} [/mm] mit [mm] \pi^{-1}\phi [/mm] = a .
daraus folgt [mm] \phi [/mm] = [mm] \pi [/mm] a [mm] \in \piA_{n}
[/mm]
es gibt also eine bijektive abbildung a [mm] \mapsto \pi [/mm] a und die ordnung von [mm] A_{n} [/mm] ist [mm] \bruch{n!}{2}.
[/mm]
stimmt meine argumentation?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:22 Sa 23.01.2010 | Autor: | etoxxl |
Ja, das sieht gut aus!
|
|
|
|