matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysispartikulärer Ansatz DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - partikulärer Ansatz DGL
partikulärer Ansatz DGL < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partikulärer Ansatz DGL: Frage
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 11.05.2005
Autor: kruder77

Hallo,

hänge ein wenig an folgender Aufgabe:

y'+ [mm] \bruch{y}{1+x}=e^{2x} [/mm]

ich habe dann den homogenen Teil bestimmt:


[mm] y_{h}=C_{1}+e^{-ln(1+x)}=C_{1}+ \bruch{1}{1+x} [/mm]

und für den partikulären Teil folgenden Ansatz
gewählt:

[mm] y_{p}=C_{2}*x*e^{2x} [/mm]
[mm] y_{p} [/mm] ' = [mm] (2*C_{2}*x+C_{2})*e^{2x} [/mm]

Und an dieser Stelle hänge ich jetzt. Ist der partikuläre Ansatz
richtig gewählt? Und wie rechne ich hier am besten weiter?

Vielen Dank für's Antworten
Kruder77

        
Bezug
partikulärer Ansatz DGL: Variation der Konstanten
Status: (Antwort) fertig Status 
Datum: 19:23 Mi 11.05.2005
Autor: MathePower

Hallo kruder77,

> [mm]y_{h}=C_{1}+e^{-ln(1+x)}=C_{1}+ \bruch{1}{1+x}[/mm]

Ich habe hier [mm]y_{h}= \bruch{C_{1}}{1+x}[/mm] herausbekommen

>  
> und für den partikulären Teil folgenden Ansatz
>  gewählt:
>  
> [mm]y_{p}=C_{2}*x*e^{2x}[/mm]
>  [mm]y_{p}[/mm] ' = [mm](2*C_{2}*x+C_{2})*e^{2x}[/mm]
>  
> Und an dieser Stelle hänge ich jetzt. Ist der partikuläre
> Ansatz
>  richtig gewählt? Und wie rechne ich hier am besten
> weiter?

Ich denke hier hilft die Variation der Konstanten weiter.

[mm]\begin{array}{l} y_{p} \; = \;\frac{{C(x)}}{{1\; + \;x}} \\ y_{p} '\; = \;\frac{{C'(x)\;\left( {1\; + \;x} \right)\; - \;C(x)}}{{1\; + \;x}} \\ \end{array}[/mm]

Gruß
MathePower

Bezug
                
Bezug
partikulärer Ansatz DGL: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:47 Mi 11.05.2005
Autor: kruder77

Hallo MathePower,

> Ich habe hier [mm]y_{h}= \bruch{C_{1}}{1+x}[/mm] herausbekommen

Ja, sorry hatte aus versehen plus anstatt mal gepostet (bin ein wenig verplant heute)  
  

> Ich denke hier hilft die Variation der Konstanten weiter.
>  
> [mm]\begin{array}{l} y_{p} \; = \;\frac{{C(x)}}{{1\; + \;x}} \\ y_{p} '\; = \;\frac{{C'(x)\;\left( {1\; + \;x} \right)\; - \;C(x)}}{{1\; + \;x}} \\ \end{array}[/mm]


ok,  habe ich gemacht bekommen dann mit :

[mm] y_{p}(x)=c(x)* \bruch{1}{1+x} [/mm]
[mm] y_{p}'(x)= \bruch{c'(x)}{1+x}- \bruch{c(x)}{(1+x)^2} [/mm]

Setze dies dann ein wobei sich dadurch  [mm] -\bruch{c(x)}{(1+x)^2} [/mm] rauskürzt
und ich auf den Term  [mm] \bruch{c'(x)}{1+x}=e^{2x} [/mm] komme. Dies habe ich dann integriert und in [mm] y_{p} [/mm] eingesetzt:

[mm] y_{p}(x)=(( \bruch{x}{2}+ \bruch{1}{4})*e^{2x})* \bruch{1}{1+x}= \bruch{(2x+1)*e^(2x)}{4x+1} [/mm]

Daraus habe ich dann die allgemeine Lösung:

y(x)= [mm] C_{1}* \bruch{1}{x+1}+ \bruch{(2x+1)*e^(2x)}{4x+1} [/mm]

erhalten. Ist das soweit alles korrekt oder habe ich einen Fehler oder etwas vergessen?

Gruß Kruder77


Bezug
                        
Bezug
partikulärer Ansatz DGL: Kontrolle
Status: (Antwort) fertig Status 
Datum: 22:18 Mi 11.05.2005
Autor: MathePower

Hallo kruder77,

> Daraus habe ich dann die allgemeine Lösung:
>  
> y(x)= [mm]C_{1}* \bruch{1}{x+1}+ \bruch{(2x+1)*e^(2x)}{4x+1}[/mm]
>  
> erhalten. Ist das soweit alles korrekt oder habe ich einen
> Fehler oder etwas vergessen?

Bei dem letzten Bruch sind die Klammern im Nenner vergessen worden, ansonsten stimmt die Lösung.

y(x)= [mm]C_{1}* \bruch{1}{x+1}+ \bruch{(2x+1)*e^{2x}}{4\;(x+1)}[/mm]

Gruß
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]