matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpartielle / totale Diffbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle / totale Diffbarkeit
partielle / totale Diffbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle / totale Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Fr 01.02.2008
Autor: Zerwas

Aufgabe
Untersuchen Sie die Funktion
      [mm] f:\IR^2\rightarrow\IR, (x,y)\rightarrow\begin{cases} \bruch{xy^2}{x^2+y^2}, & \mbox{für } (x,y) \not= (0,0) \\ 0, & \mbox{sonst } \end{cases} [/mm]
auf Stetigkeit, partielle Differenzierbarkeit, totale Differenzierbarkeit und stetige partielle Differenzierbarkeit.

Stetigkeit:
Da f gebrochen rational für alle [mm] (x,y)\not= [/mm] (0,0) bleibt nur noch die Stetigkeit in (0,0) zu zeigen:
Dazu setze ich 2 Nullfolgen ein:
Sei [mm] x,y=\frac{1}{n} \Rightarrow [/mm]
[mm] f(\frac{1}{n},\frac{1}{n}) [/mm] = [mm] \frac{\frac{1}{n^3}}{\frac{2}{n^2}} [/mm] = [mm] \frac{1}{2n} \rightarrow [/mm] 0 für [mm] n\rightarrow\infty [/mm]
Analog kann ich das ganze auch mit [mm] -\frac{1}{n} [/mm] machen.

Jetzt habe ich mich aber gefragt ob ich nicht eigentlich auch noch alle anderen Fälle durchgehn müsste. Es ist ja bisher außen vorgelassen, dass x "von oben" und y "von unten" gegen 0 geht und umgekert. Im Endeffekt ist das bei dieser Aufgabe immer das gleiche was Rauskommt (nur mit evtl einem "-" davor) aber im Allgemeinen müsste man das doch auch überprüfen oder?

partielle Differenzierbarkeit:
[mm] \frac{\delta f}{\delta x} [/mm] = [mm] \frac{-x^2y^2+y^4}{(x^2+y^2)^2} [/mm] (n. Quotientenregel)
[mm] \frac{\delta f}{\delta y} [/mm] = [mm] \frac{2x^3y}{(x^2+y^2)^2} [/mm] (n. Quotientenregel)
Jetzt fehlt mir noch der Nullpunkt (0,0) dazu muss ich mit dem Differentienquotienten arbeiten:
[mm] \frac{\delta f}{\delta x} [/mm] = $ [mm] \lim_{h \to 0} \frac{f(x_0+h\cdot{}(1,0))-f(x_0)}{h}=\lim_{h \to 0} \frac{f(h,0)-f(0,0)}{h}=\lim_{h \to 0}\frac{f(h,0)}{h} [/mm] $ = [mm] \lim_{h \to 0}\frac{\frac{h*0^2}{h^2+0^2}}{h}=0 [/mm]
[mm] \frac{\delta f}{\delta y} [/mm] = $ [mm] \lim_{h \to 0} \frac{f(x_0+h\cdot{}(0,1))-f(x_0)}{h}=\lim_{h \to 0} \frac{f(0,h)-f(0,0)}{h}=\lim_{h \to 0}\frac{f(0,h)}{h} [/mm] $ = [mm] \lim_{h \to 0}\frac{\frac{0*h^2}{0^2+h^2}}{h}=0 [/mm]
Damit ist f partiell Differenzierbar für alle (x,y) [mm] \in\IR^2 [/mm]

[u] totale Differenzierbarkeit: [mm] [\u] [/mm]
Est ist also zu zeigen, dass die f in allen [mm] (x,y)\in\IR^2 [/mm] stetig partiell Differenzierbar ist. (Damit wäre dann auch die [u] stetige partielle Differenzierbarkeit [mm] [\u] [/mm] gezeigt.)
Dass [mm] \frac{\delta f}{\delta x} [/mm] und [mm] \frac{\delta f}{\delta y} [/mm] stetig sind für alle [mm] (x,y)\not= [/mm] (0,0) folgt aus der gebrochen rationalen Form.
D.h. es bleibt zu zeigen, dass f in (0,0) stetig partiell Diffbar ist:
Setze [mm] x,y=\frac{1}{n} \Rightarrow [/mm]
[mm] \frac{\delta f}{\delta x}(\frac{1}{n},\frac{1}{n}) [/mm] = [mm] \frac{-\frac{1}{n}^2\frac{1}{n}^2+\frac{1}{n}^4}{(\frac{1}{n}^2+\frac{1}{n}^2)^2} [/mm] = 0
[mm] \frac{\delta f}{\delta y}(\frac{1}{n},\frac{1}{n}) [/mm] = [mm] \frac{2\frac{1}{n}^3\frac{1}{n}}{(\frac{1}{n}^2+\frac{1}{n}^2)^2} [/mm] = [mm] \frac{1}{2}\not= [/mm] 0
Damit ist f nicht stetig partiell Diffbar und damit auch nicht total Diffbar.

Passt das so? Oder habe ich Denk- bzw. Verständnissfehler drin?

Danke und Gruß
  Zerwas

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

        
Bezug
partielle / totale Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 So 03.02.2008
Autor: leduart

Hallo
1. für Folgenstetigkeit braucht man : für JEDE Folge [mm] x_n,y_n [/mm] geht [mm] f(x_n,y_n) [/mm] gegen 0. das hilft für Unstetigkeit, wenn man nur eine Folge findet die nicht konv. aber nicht für Stetigkeit. setz x=rcost,y=rsint, und lass r gegen 0 gehen. dann hast dus direkt.
2. stetigkeit der part. Ableitung ist ein hinreichendes, keine notwendige Bedingung für die Existenz des totalen Differentials.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]