partielle integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 03:49 Do 04.07.2019 | Autor: | lenz |
Hallo
Ich sitze gerade an einer partiellen Integration und zwar soll
[mm] -2\frac{1}{4\pi i m}\int_{-\infty}^{\infty} dy\,\,\overbrace{e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}}^{=f'}\overbrace{\Psi(x+\frac{y}{2})}^{=g}
[/mm]
partiell nach y integriert werden. Rauskommen soll
[mm] -\frac{2ip}{\hbar}\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})+\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\frac{\partial\Psi(x+\frac{y}{2})}{\partial y}
[/mm]
Wenn ich das partiell integriere, komme ich aber auf das
[mm] -2\frac{1}{4\pi i m}\biggl(\Bigl[\Psi(x+\frac{y}{2})\int_{-\infty}^{\infty}dy\, e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}\Bigr]_{y=-\infty}^{\infty}-\int_{-\infty}^{\infty}dy\,\frac{\partial \Psi(x+\frac{y}{2})}{\partial y}\int_{-\infty}^{\infty}dy'\,e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y'}{2})}{\partial y'^2}\biggr)
[/mm]
Man kann ja eigentlich aus der ersten Gleichung ablesen, dass g unter dem Integral nicht mehr vorkommt sondern nur noch [mm] \frac{\partial g}{\partial y}.
[/mm]
Mache ich irgendwelche grundsätzlichen Fehler? Die Funktionen [mm] \Psi [/mm] und [mm] \Psi^\* [/mm] sind übrigens [mm] \in \IL^2_{[-\infty,\infty]} [/mm] ( genauer Lsg. der Schrödingergl.), gehen also im Unendlichen gegen 0, so dass es sein kann, dass man ausgewertete Integrale, wie der erste Term in Gleichung 3 (wobei mir nicht klar ist, ob es in diesem Fall geht, da ich nicht weiß, ob sich die [mm] \IL^2 [/mm] Eigenschaft zumindest für Wellenfunktionen auf die Ableitungen überträgt), als 0 annehmen kann.
Für Hilfe wäre ich dankbar.
Gruß Lennart
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:33 Do 04.07.2019 | Autor: | fred97 |
> Hallo
> Ich sitze gerade an einer partiellen Integration und zwar
> soll
>
> [mm]-2\frac{1}{4\pi i m}\int_{-\infty}^{\infty} dy\,\,\overbrace{e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}}^{=f'}\overbrace{\Psi(x+\frac{y}{2})}^{=g}[/mm]
>
> partiell nach y integriert werden. Rauskommen soll
>
> [mm]-\frac{2ip}{\hbar}\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})+\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\frac{\partial\Psi(x+\frac{y}{2})}{\partial y}[/mm]
>
> Wenn ich das partiell integriere, komme ich aber auf das
>
> [mm]-2\frac{1}{4\pi i m}\biggl(\Bigl[\Psi(x+\frac{y}{2})\int_{-\infty}^{\infty}dy\, e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}\Bigr]_{y=-\infty}^{\infty}-\int_{-\infty}^{\infty}dy\,\frac{\partial \Psi(x+\frac{y}{2})}{\partial y}\int_{-\infty}^{\infty}dy'\,e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y'}{2})}{\partial y'^2}\biggr)[/mm]
>
> Man kann ja eigentlich aus der ersten Gleichung ablesen,
> dass g unter dem Integral nicht mehr vorkommt sondern nur
> noch [mm]\frac{\partial g}{\partial y}.[/mm]
> Mache ich irgendwelche
> grundsätzlichen Fehler? Die Funktionen [mm]\Psi[/mm] und [mm]\Psi^\*[/mm]
> sind übrigens [mm]\in \IL^2_{[-\infty,\infty]}[/mm] ( genauer Lsg.
> der Schrödingergl.), gehen also im Unendlichen gegen 0, so
> dass es sein kann, dass man ausgewertete Integrale, wie der
> erste Term in Gleichung 3 (wobei mir nicht klar ist, ob es
> in diesem Fall geht, da ich nicht weiß, ob sich die [mm]\IL^2[/mm]
> Eigenschaft zumindest für Wellenfunktionen auf die
> Ableitungen überträgt), als 0 annehmen kann.
> Für Hilfe wäre ich dankbar.
> Gruß Lennart
In obigen Integralen ist ja x konstant und integriert wird nach y. Du setzt also, wenn ich Dich richtig verstehe
[mm] $f'(y)=e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}$.
[/mm]
Nun kommt es mir so vor, als meintest Du, dass dann
[mm] $f(y)g(y)=\Bigl[\Psi(x+\frac{y}{2})\int_{-\infty}^{\infty}dy\, e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^*(x-\frac{y}{2})}{\partial y^2}\Bigr]_{y=-\infty}^{\infty}$
[/mm]
sei. Das ist aber völliger Unsinn. Ich hab keine Ahnung , wie Du darauf kommst. Das das nicht stimmen kann, sieht man schon daran, dass der rechte Ausdruck von y nicht abhängt !
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:54 Do 04.07.2019 | Autor: | lenz |
Hallo
Danke für die Antwort. Mir ist leider nicht ganz klar, warum der rechte Ausdruck nicht von y abhängen sollte. Kann man nicht annehmen, dass das ein Ausdruck für eine nicht bestimmte Stammfunktion sei? Müsste ich ansonsten die partiellen Integrationen solange durchführen, bis ich für den Teil der ausgewertet werden soll auf Stammfunktionen treffe? Ist zumindest der Ausdruck [mm] \int_{-\infty}^{\infty}dy\, e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^*(x-\frac{y}{2})}{\partial y^2} [/mm] für f richtig?
Gruß Lennart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Do 04.07.2019 | Autor: | fred97 |
> Hallo
> Danke für die Antwort. Mir ist leider nicht ganz klar,
> warum der rechte Ausdruck nicht von y abhängen sollte.
> Kann man nicht annehmen, dass das ein Ausdruck für eine
> nicht bestimmte Stammfunktion sei? Müsste ich ansonsten
> die partiellen Integrationen solange durchführen, bis ich
> für den Teil der ausgewertet werden soll auf
> Stammfunktionen treffe? Ist zumindest der Ausdruck
> [mm]\int_{-\infty}^{\infty}dy\, e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^*(x-\frac{y}{2})}{\partial y^2}[/mm]
> für f richtig?
Nein, nach y wird in diesem Ausdruck integriert, was rauskommt hängt nicht mehr von y ab.
> Gruß Lennart
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 19:29 Do 04.07.2019 | Autor: | lenz |
Hallo
Danke nochmal für die Antwort.
Sehe ich ein, aber wie kann ich dann einen Ausdruck für f angeben?
Wie wäre es mit einem unbestimmten Integral als Stammfunktion von f?
Also die Idee dahinter war , dass der ausgewertete Ausdruck der partiellen Integration, in dem was rauskommen soll, ja gar nicht auftaucht, also irgendwie 0 sein muss. Ich hatte gehofft, ihn durch das Argument, dass [mm] \Psi [/mm] im unendlichen 0 wird und [mm] \Tilde f=\int e^{ikx} [/mm] f(x)dx für integrierbare Funktionen endlich ist, vernachlässigen zu können.
Gruß Lennart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mo 08.07.2019 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Hiho,
> Hallo
> Ich sitze gerade an einer partiellen Integration und zwar
> soll
>
> [mm]-2\frac{1}{4\pi i m}\int_{-\infty}^{\infty} dy\,\,\overbrace{e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}}^{=f'}\overbrace{\Psi(x+\frac{y}{2})}^{=g}[/mm]
>
> partiell nach y integriert werden. Rauskommen soll
>
> [mm]-\frac{2ip}{\hbar}\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})+\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\frac{\partial\Psi(x+\frac{y}{2})}{\partial y}[/mm]
Mal abgesehen, dass du beim Ergebnis das dy vergessen hast, kannst du das auch einfach von hinten aufzäumen.
Zeigen wir also, dass das Ergebnis gleich der Ausgangsgleichung ist.
Dazu betrachten wir den hinteren Summanden und führen die entgegengesetzte partielle Integration durch:
$ [mm] \int_{-\infty}^{\infty} [/mm] dy [mm] e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\frac{\partial\Psi(x+\frac{y}{2})}{\partial y}$
[/mm]
$= [mm] \left[e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})\right]^\infty_{-\infty} [/mm] + [mm] 2\frac{i}{\hbar}p \int_{-\infty}^{\infty} [/mm] dy [mm] \; e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2}) [/mm] + [mm] \int_{-\infty}^{\infty} dy\; e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}\Psi(x+\frac{y}{2}) [/mm] $
Setzen wir das nun ein, erhalten wir also fuer dein Ergebnis:
> partiell nach y integriert werden. Rauskommen soll
>
> [mm]-\frac{2ip}{\hbar}\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})+\int_{-\infty}^{\infty}e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\frac{\partial\Psi(x+\frac{y}{2})}{\partial y}[/mm]
$= [mm] \left[e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})\right]^\infty_{-\infty} [/mm] + [mm] \int_{-\infty}^{\infty} dy\; e^{-\frac{i}{\hbar}py}\frac{\partial^2 \Psi^\*(x-\frac{y}{2})}{\partial y^2}\Psi(x+\frac{y}{2}) [/mm] $
Was ja schon aussieht wie dein Ausgangsintegral ohne Vorfaktor (entweder wurde der weggelassen, oder kommt durchs Ableiten von [mm] $\Psi^\*$ [/mm] zustande, da erscheinen bei der Lsg der Schroedingergleichung ja auch Faktoren). Einzig zu zeigen / zu begruenden ist nun also:
$ [mm] \left[e^{-\frac{i}{\hbar}py}\frac{\partial \Psi^\*(x-\frac{y}{2})}{\partial y}\Psi(x+\frac{y}{2})\right]^\infty_{-\infty} [/mm] = 0$
Das folgt aber aus deinen Voraussetzungen sofort...
Gruss,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:27 Fr 05.07.2019 | Autor: | lenz |
Alles klar. Danke für die Antwort. Das der eine Summand 0 wird ist glaube ich nicht ganz klar, weil sich die (Quadrat)Integrierbarkeit glaube ich nicht unbedingt auf die Ableitung überträgt.
Gruß Lennart
|
|
|
|