matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartielle Integration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - partielle Integration
partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 19.01.2011
Autor: Tilo42

Aufgabe
Berechnen Sie:

[mm] \integral_{0}^{3}{(x*(x-3)^5) dx} [/mm]

Ich habe es folgendermaßen gerechnet:

u(x)=x; u'(x)=1
v(x)= 1/6 [mm] (x-3)^6 [/mm] ; v'(x)= [mm] (x-3)^5 [/mm]

[mm] \integral_{0}^{3}{(x*(x-3)^5) dx} [/mm] = [mm] x*1/6(x-3)^6 [/mm] |(0 bis 3) - [mm] \integral_{0}^{3}{(1/6*(x-3)^6) dx} [/mm]

Hier komme ich nicht weiter, da ich nicht weiß wie ich hoch6 integrieren kann.
Mein Ansatz wäre (x-3)=z zu setzen:

Dann würde herauskommen 1/36 [mm] z^7 [/mm] (in den Grenzen von 0 bis 3) was 0 ergibt, was aber vermutlich falsch ist. Kann mir jemand sagen, was ich falsch gemacht habe???

        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 19.01.2011
Autor: schachuzipus

Hallo Tilo42,


> Berechnen Sie:
>  
> [mm]\integral_{0}^{3}{(x*(x-3)^5) dx}[/mm]
>  Ich habe es
> folgendermaßen gerechnet:
>  
> u(x)=x; u'(x)=1
>  v(x)= 1/6 [mm](x-3)^6[/mm] ; v'(x)= [mm](x-3)^5[/mm]
>  
> [mm]\integral_{0}^{3}{(x*(x-3)^5) dx}[/mm] = [mm]x*1/6(x-3)^6[/mm] |(0 bis 3)  - [mm]\integral_{0}^{3}{(1/6*(x-3)^6) dx}[/mm] [ok]
>  
> Hier komme ich nicht weiter, da ich nicht weiß wie ich
> hoch6 integrieren kann.

Na, im Schritt vorher hast du [mm](x-3)^5[/mm] integriert.

"hoch 6" geht doch genauso ;-)

>  Mein Ansatz wäre (x-3)=z zu setzen:

Das ist ne Möglichkeit ...

>  
> Dann würde herauskommen 1/36 [mm]z^7[/mm] (in den Grenzen von 0 bis
> 3) was 0 ergibt, was aber vermutlich falsch ist. Kann mir
> jemand sagen, was ich falsch gemacht habe???

Der Vorfaktor stimmt nicht.

Es ist [mm]\int{(x-3)^6 \ dx}=\frac{1}{7}(x-3)^7[/mm]

Leite ab und es kommt [mm](x-3)^6[/mm] raus.

Damit also [mm]\int{\frac{1}{6}(x-3)^6 \ dx}=\frac{1}{6}\cdot{}\frac{1}{7}(x-3)^7=\frac{1}{\red{42}}(x-3)^7[/mm]


Setze nun nochmal alles zusammen ...

Was kommt am Ende heraus?

Gruß

schachuzipus



Bezug
                
Bezug
partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 19.01.2011
Autor: Tilo42

Ah natürlich, sry hatte ein Brett vorm Kopf ;D

Wenn ich das dann einsetze komme ich auf 729/14 bzw. rund 52,0714, da es bei der Grenze 3 wegfällt, da (x-3) = 0 für x=3, folglich nur noch für -7, was dann mein ergebnis ergibt^^

Noch Fehler drin oder soweit richtig?

Und danke für deine Hilfe :D  

Bezug
                        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Mi 19.01.2011
Autor: MathePower

Hallo Tilo42,

> Ah natürlich, sry hatte ein Brett vorm Kopf ;D
>  
> Wenn ich das dann einsetze komme ich auf 729/14 bzw. rund
> 52,0714, da es bei der Grenze 3 wegfällt, da (x-3) = 0
> für x=3, folglich nur noch für -7, was dann mein ergebnis
> ergibt^^


Die Grenze x=3 spielt für die Auswertung von
[mm]-\bruch{\left(x-3\right)^{7}}{42}[/mm] keine Rolle, da x=3.

Daher ist nur die Auswertung an der   Stelle x=0 erforderlich.


> Noch Fehler drin oder soweit richtig?
>  
> Und danke für deine Hilfe :D  


Gruss
MathePower

Bezug
        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mi 19.01.2011
Autor: fencheltee


> Berechnen Sie:
>  
> [mm]\integral_{0}^{3}{(x*(x-3)^5) dx}[/mm]
>  Ich habe es
> folgendermaßen gerechnet:

wenn du von vornherein z=x-3 setzt, bist du schneller fertig. es sei denn, die integrationsmethode war vorgeschrieben?

>  
> u(x)=x; u'(x)=1
>  v(x)= 1/6 [mm](x-3)^6[/mm] ; v'(x)= [mm](x-3)^5[/mm]
>  
> [mm]\integral_{0}^{3}{(x*(x-3)^5) dx}[/mm] = [mm]x*1/6(x-3)^6[/mm] |(0 bis 3)
> - [mm]\integral_{0}^{3}{(1/6*(x-3)^6) dx}[/mm]
>  
> Hier komme ich nicht weiter, da ich nicht weiß wie ich
> hoch6 integrieren kann.
>  Mein Ansatz wäre (x-3)=z zu setzen:
>  
> Dann würde herauskommen 1/36 [mm]z^7[/mm] (in den Grenzen von 0 bis
> 3) was 0 ergibt, was aber vermutlich falsch ist. Kann mir
> jemand sagen, was ich falsch gemacht habe???

gruß tee

Bezug
                
Bezug
partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Mi 19.01.2011
Autor: Tilo42

Nein, die Rechenmethode war nicht vorgegeben.

Danke an alle für eure Hilfe :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]