matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationpartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - partielle Integration
partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:33 Sa 27.11.2010
Autor: richardducat

Aufgabe
[mm] \bruch{1}{2m}\integral_{-\infty}^{\infty}{d^3r(\psi^{\*}(r,t)rP^2\psi(r,t)-\psi(r,t)rP^2\psi^{\*}(r,t) )}\underbrace{=}_{Partielle Integration}-\bruch{1}{2m}\integral_{-\infty}^{\infty}{d^3r(P_{\nu}(\psi^{\*}(r,t)r)P_{\nu}\psi(r,t)-P_{\nu}(\psi(r,t)r)P_{\nu}\psi^{\*}(r,t) )} [/mm] über Index [mm] \nu [/mm] wird summiert


hallo,

das ist ein Teil eines Beweises aus dem Skript für Quantenmechanik.

mir geht es nur um die partielle Integration, d.h. um die Rechte Seite des Gleichheitszeichens.

Ich würde gerne verstehen, wie genau hiert Part.Int. angwandt wurde und was die Bemerkung "über index [mm] \nu [/mm] wird summiert" heißen soll, und was genau hier summiert wird.

gruß
richard



        
Bezug
partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Sa 27.11.2010
Autor: richardducat

hat niemand eine Idee?

würde mich über einen Tipp sehr freuen.

vg
richard

Bezug
        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 28.11.2010
Autor: rainerS

Hallo!

>
> [mm]\bruch{1}{2m}\integral_{-\infty}^{\infty}{d^3r(\psi^{\*}(r,t)rP^2\psi(r,t)-\psi(r,t)rP^2\psi^{\*}(r,t) )}\underbrace{=}_{Partielle Integration}-\bruch{1}{2m}\integral_{-\infty}^{\infty}{d^3r(P_{\nu}(\psi^{\*}(r,t)r)P_{\nu}\psi(r,t)-P_{\nu}(\psi(r,t)r)P_{\nu}\psi^{\*}(r,t) )}[/mm]
> über Index [mm]\nu[/mm] wird summiert
>  
> hallo,
>  
> das ist ein Teil eines Beweises aus dem Skript für
> Quantenmechanik.
>  
> mir geht es nur um die partielle Integration, d.h. um die
> Rechte Seite des Gleichheitszeichens.
>
> Ich würde gerne verstehen, wie genau hiert Part.Int.
> angwandt wurde und was die Bemerkung "über index [mm]\nu[/mm] wird
> summiert" heißen soll, und was genau hier summiert wird.

Was ist denn [mm] $P_\nu$? [/mm] Die partielle Ableitung nach [mm] $x_\nu$? [/mm] Dann wäre [mm] $P^2$ [/mm] der Laplaceoperator [mm] $\summe_\nuP_\nuP\nu$ [/mm] und es handelt sich um die erste Greensche Identität. (Der Randterm verschwindet, wenn die Wellenfunktion schnell genug abfällt.)

Anders ausgedrückt: es ist eine normale partielle Integration:

[mm] \integral f(r) \partial_\nu \partial_\nu g(r) = - \integral (\partial_\nu f(r)) (\partial_\nu g(r)) [/mm] .

  Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]