matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationpartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - partielle Integration
partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 30.09.2008
Autor: ginocazino

Aufgabe
Berechnen Sie mit der partiellen Integration. Das Integral

[mm] \integral x/((cosx)^2) [/mm] dx

Habe mehrmals versucht diese Aufgabe zu lösen. Es gelang mir jedoch nur diese Gleichung aufzustellen: x*tanx - [mm] \integral [/mm] tanx

Habe auch eine Formel für [mm] \integral [/mm] tanx gefunden. jedoch soll die lösung gefunden werden, indem man alles auf Grundintegrale zurückführt.

        
Bezug
partielle Integration: Definition anwenden
Status: (Antwort) fertig Status 
Datum: 21:05 Di 30.09.2008
Autor: Loddar

Hallo ginocazino!


Wende die Definition an: [mm] $\tan(x) [/mm] \ := \ [mm] \bruch{\sin(x)}{\cos(x)}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 30.09.2008
Autor: ginocazino

Ich komme in eine Endlosschleife und treffe wieder auf das integral

[mm] \integral [/mm] sinx/cosx dx

Könnte jemand die Lösung aufzeigen? Weiß nicht mehr weiter!

Vielen Dank



Bezug
                        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 30.09.2008
Autor: schachuzipus

Hallo ginocazino,

> Ich komme in eine Endlosschleife und treffe wieder auf das
> integral
>
> [mm]\integral[/mm] sinx/cosx dx
>  
> Könnte jemand die Lösung aufzeigen? Weiß nicht mehr
> weiter!

Das Integral [mm] $\int{\tan(x) \ dx}=\int{\frac{\sin(x)}{\cos(x)} \ dx}$ [/mm] bekommst du schnell mit der Substitution [mm] $u:=\cos(x)$ [/mm] in den Griff

Oder durch scharfes Hinsehen, aber nur, wenn dir der Begriff "logarithmisches Integral" etwas sagt ... ;-)

>  
> Vielen Dank
>  
>  

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]