matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpartielle Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle Differenzierbarkeit
partielle Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 22.04.2006
Autor: neli

Aufgabe
Die Funktion f: [mm] \IR^n \to \IR [/mm] sei stetig partiell differenzierbar und es gebe ein p [mm] \in \IN, [/mm] so dass f(tx) = [mm] t^p*f(x) [/mm] für alle t [mm] \in \IR [/mm] und x [mm] \in \IR^n [/mm] gilt. Zeigen sie:
[mm] \summe_{i=1}^{n}x_i* \bruch{ \delta f}{ \delta x_i}(x) [/mm] = pf(x)

Habe überhaubt keine Ahnung, was ich mit dieser Aufgabe anfangen soll :-(
habe die Thematik der partiellen Differenzierbarkeit noch nicht wirklich durchdrungen kann es zwar rechnen aber kann mir hier gerade unter den ganzen Bedingungen nicht viel vorstellen

kann ich aus f(tx) = [mm] t^p*f(x) [/mm] folgern, dass f(x) irgendwie die Gestalt f(x) = (x|x) haben sollte? Wobei (x|x) standard Skalarprodukt von x mit sich selbst sein soll
damit würden dann zumindest für den Fall n=1  die Gleichung gelten, weil
dann wäre (x|x) ja quasi [mm] x^2 [/mm] und
f(tx)= [mm] (tx)^2 [/mm] = [mm] t^2*x^2 [/mm] = [mm] t^2*f(x) [/mm]
und aus der Summe würde ja einfach
xf´(x) = x*2x = [mm] 2x^{2} [/mm] = 2f(x)

mit dem Standard Skalarprodukt dürfte die Gleichung auch für beliebiges n gelten
Kann ich das den irgendwie verallgemeiner?

bin für jeden Ansatz dankbar

Ich habe die Frage in keinem anderen Forum gestellt

mit freundlichen Grüßen Neli

        
Bezug
partielle Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Sa 22.04.2006
Autor: MatthiasKr

Hallo neli,

je nachdem, wie wohl man sich schon in der mehrdimensionalen analysis fühlt, ist diese aufgabe gar nicht so schwer.... ;-)
Hattet ihr schon die mehrdim. kettenregel? Nimm dir dann die gleichung [mm] $f(tx)=t^p\cdot [/mm] f(x)$ und leite sie nach $t$ ab. Dann hast du die lösung schon fast da stehen.

VG
Matthias

Bezug
                
Bezug
partielle Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 So 23.04.2006
Autor: neli

Na das lässt ja dann noch hoffen :-)
habe mal Versucht die abzuleiten aber da mir das jetzt noch nicht wirklich weiterhilft habe ich etwas den Verdacht die Ableitung stimmt nicht
also ich habe da dann raus:
"Nabla"f(tx)x = [mm] pt^{p-1}f(x) [/mm]
("Nabla" = [mm] (D_1,....D_n) [/mm] und [mm] D_i [/mm] = i-te partielle Ableitung)
daraus folgt dann, dass pf(x) [mm] ="Nabla"f(tx)*\bruch{x}{t^{p-1}} [/mm]
Aber wie kriege ich das t aus der Gleichung das kommt ja in der unteren Gleichung nicht mehr vor

Bezug
                        
Bezug
partielle Differenzierbarkeit: t=1 (oT.)
Status: (Antwort) fertig Status 
Datum: 10:59 So 23.04.2006
Autor: MatthiasKr

.

Bezug
                        
Bezug
partielle Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 So 23.04.2006
Autor: neli

Ich kann doch nicht einfach t=1 setzen oder?
die Gleichung f(tx) = [mm] t^p*f(x) [/mm] soll ja für alle t [mm] \in \IR [/mm] gelten


Bezug
                                
Bezug
partielle Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 So 23.04.2006
Autor: MatthiasKr

doch klar, kannst du!
Die gleichung gilt für alle $t$, deshalb kannst du nach $t$ ableiten. Schaut man sich dann die entstehende gleichung nur für $t=1$ an, hat man die zu beweisende aussage. Ist nix gegen zu sagen!

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]