partielle Abbildungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 10:40 Mo 30.06.2008 | Autor: | xxxx |
Aufgabe | a)Sei k [mm] \IN. [/mm] Zeige, dass [mm] f_k [/mm] : [mm] M_{nxn} (\IR) \to M_{nxn} (\IR)
[/mm]
[mm] f_k [/mm] (A) = [mm] A^k [/mm] eine [mm] C^1-Abbildung [/mm] ist und
[mm] df_k [/mm] (A) * B = [mm] \summe_{j=0}^{k-1} A^j [/mm] * B * [mm] A^{k-1-j}
[/mm]
b) Zeige, dass die Abbildung [mm] exp:M_{nxn} (\IR) \to M_{nxn} (\IR),
[/mm]
exp(A) = [mm] \summe_{k=0}^{infty} \bruch{1}{k!} [/mm] * [mm] A^k [/mm] von der Klasse [mm] C^1 [/mm] ist und berechne d exp(0) |
zur a) also um ehrlich zu sein, weiss ich nicht so genau, was genau von mir verlangt wird. Ich hab doch eine nxn-Matrix hoch k und dann soll ich zeigen dass die quasi einmal abgeleitet wurde oder was genau ist gemeint... der zweite Teil der a ist auch nicht so gant verständlich, aber dort geht es doch auch darum, das meine Funktion bereits abgeleitet ist und diese dann mit B mutlipliziert wird.... oder so ähnlich...
zur b)
also ich glaub wenn ich die a verstanden habe, dann muesste die b eigentlich recht einfach sein, weil ja quasi das gleiche verlangt wird. Es soll ja gezeigt werden das die Abbildungen der Klasse [mm] C^1 [/mm] angehören... uebers berechnen mach ich mir danach Gedanken ^^
wäre echt nett wenn mir jemand wieder mal auf die Spruenge helfen könnte
lg xxxx
|
|
|
|
> a)Sei [mm]k \IN[/mm]. Zeige, dass [mm]f_k : M_{nxn} (\IR) \to M_{nxn} (\IR)[/mm]
>
> [mm]f_k (A) = A^k[/mm] eine [mm]C^1[/mm]-Abbildung ist und
> [mm]df_k (A) * B = \summe_{j=0}^{k-1} A^j * B * A^{k-1-j}[/mm]
> zur a) also um ehrlich zu sein, weiss ich nicht so genau,
> was genau von mir verlangt wird. Ich hab doch eine
> nxn-Matrix hoch k und dann soll ich zeigen dass die quasi
> einmal abgeleitet wurde oder was genau ist gemeint...
Zuerst sollst Du die Stetigkeit von [mm] $f_k: M_{n\times n}(\IR)\rightarrow M_{n\times n}(\IR)$ [/mm] zeigen. So könntest Du zum Beispiel zu zeigen versuchen, dass es für alle [mm] $A\in M_{n\times n}(\IR)$ [/mm] und alle [mm] $\varepsilon>0$ [/mm] ein [mm] $\delta [/mm] >0$ gibt, so dass für alle [mm] $B\in M_{n\times n}(\IR)$ [/mm] mit [mm] $\parallel B\parallel <\delta$ [/mm] gilt
[mm]\parallel f_k(A+B)-f_k(A)\parallel = \parallel (A+B)^k-A^k\parallel <\varepsilon[/mm]
Tipp: wenn Du [mm] $(A+B)^k$ [/mm] ausmultiplizierst, dann hebt sich [mm] $A^k$ [/mm] heraus und es bleibt nur noch eine Summe von Produkten, in denen stets mindestens ein Faktor $B$ vorkommt.
>der
> zweite Teil der a ist auch nicht so gant verständlich, aber
> dort geht es doch auch darum, das meine Funktion bereits
> abgeleitet ist und diese dann mit B mutlipliziert wird....
> oder so ähnlich...
[mm]df_k (A) \circ B[/mm] ist "die Ableitung von [mm] $f_k$ [/mm] an der Stelle $A$ angewandt auf den Zuwachs $B$" (ich hätte natürlich am liebsten wieder [mm] $\Delta [/mm] A$ anstelle von $B$ geschrieben: aber was soll's).
Schau also mal an, was Du bis zu in $B$ linearen Glieder erhältst, wenn Du [mm] $(A+B)^k$ [/mm] ausmultiplizierst (dass $A$ und $B$ kommutieren, d.h. dass [mm] $A\circ B=B\circ [/mm] A$ gilt,darf natürlich nicht angenommen werden). Das ergibt so etwas wie
[mm]f_k(A+B)=(A+B)^k = A^k+\sum_{j=0}^{k-1}A^j\circ B\circ A^{k-1-j}+o(\parallel B\parallel)[/mm]
[mm] $A^k$ [/mm] ist [mm] $f_k(A)$ [/mm] und offensichtlich ist [mm] $\sum_{j=0}^{k-1}A^j\circ B\circ A^{k-1-j}$ [/mm] linear in $B$; der Rest ist [mm] $o(\parallel B\parallel)$, [/mm] weil in diesen Produkten von $A$ und $B$ jeweils mindestens zwei Faktoren $B$ auftreten. Also muss [mm] $A^k+\sum_{j=0}^{k-1}A^j\circ B\circ A^{k-1-j}$ [/mm] die Ableitung von [mm] $f_k$ [/mm] an der Stelle $A$ angewandt auf den Zuwachs $B$ sein.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:22 Sa 05.07.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|