matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpartiell stetig diffbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - partiell stetig diffbar
partiell stetig diffbar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partiell stetig diffbar: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:37 Mi 15.04.2009
Autor: Held

Aufgabe
Frage bei folgendem Beweis:

Sei f: U [mm] \subset \IR^n \to \IR^m, x_{0} \in [/mm] U, U offen.

Wenn f in [mm] x_{0} [/mm] stetig partiell differenzierbar,

dann ist f in [mm] x_{0} [/mm] total differenzierbar

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Der Beweis steht auf Seite 77 []hier

Mein Problem ist die erste Aussage, dass [mm] f=(f_{1} f_{2} f_{3} [/mm] ... [mm] f_{n} [/mm] ) genau dann stetig diffbar in [mm] x_{0} [/mm] ist,
wenn [mm] f_{i} [/mm] stetig diffbar in [mm] x_{0} [/mm] ist für i=1...n,


Ich verstehe nämlich nicht, wenn gilt  [mm] \pmat{ a_{i1}(x) & a_{i2}(x) & \ldots & a_{in}(x) } [/mm]  ist stetig für i=1...n
wieso sollte das äquivalent sein zu  

[mm] \pmat{ a_{11}(x) & a_{12}(x) & \cdots & a_{1n}(x) \\ \vdots & & \ddots & \vdots \\ a_{m1}(x) & a_{m2}(x) & \cdots & a_{mn }(x)} [/mm] ist stetig,
und was bedeut stetigkeit, bei einer Matrix mit funktion als Einträgen? Ich kenn noch nicht mal eine Norm um für sowas stetigkeit nachzuprüfen.

Oder gibt es ein viel einfacheren Beweis, mit den man die Bemerkung versteht?


Die Differenzierbarkeit leuchtet mir ein wegen

f ist differenzierbar in [mm] x_{0} \gdw \exists [/mm] ein r(x) mit [mm] \limes_{x\rightarrow x_{0}} [/mm] r(x) =  und

[mm] f(x)=\vektor{f_{1}(x) \\ f_{2}(x) \\\vdots \\ f_{n}(x)} [/mm] = [mm] \vektor{f_{1}(x_{0}) \\ f_{2}(x_{0}) \\\vdots \\ f_{n}(x_{0})} [/mm] + [mm] \pmat{ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn }}(x-x_{0}) [/mm] + [mm] \vektor{r_{1}(x) \\r_{2}(x) \\\vdots \\ r_{n}(x)} \parallel x-x_{0} \parallel_{x} [/mm] (*)

Wegen Lemma 6.2.3 im Script gilt für

r(x) =  [mm] \vektor{r_{1}(x) \\r_{2}(x) \\\vdots \\ r_{n}(x)} [/mm]

[mm] \limes_{x\rightarrow x_{0}} [/mm] r(x) = 0 gdw [mm] \limes_{x\rightarrow x_{0}} r_{i}(x) [/mm] = 0 für i=1,..,n

Also ist (*) äquivalent zu:


[mm] f_{i}(x) [/mm] = [mm] \pmat{ a_{i1} & a_{i2} & \ldots & a_{in} } (x-x_{0}) +r_{i}(x) \parallel x-x_{0} \parallel_{x} [/mm]

[mm] \gdw [/mm]

[mm] f_{i} [/mm] ist differenzierbar in [mm] x_{0} [/mm]

Gruß Held

        
Bezug
partiell stetig diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 15.04.2009
Autor: Marcel

Hallo,

> Frage bei folgendem Beweis:
>  
> Sei f: U [mm]\subset \IR^n \to \IR^m, x_{0} \in[/mm] U, U offen.
>
> Wenn f in [mm]x_{0}[/mm] stetig partiell differenzierbar,
>
> dann ist f in [mm]x_{0}[/mm] total differenzierbar
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Der Beweis steht auf Seite 77
> []hier
>  
> Mein Problem ist die erste Aussage, dass [mm]f=(f_{1} f_{2} f_{3}[/mm]
> ... [mm]f_{n}[/mm] ) genau dann stetig diffbar in [mm]x_{0}[/mm] ist,
>  wenn [mm]f_{i}[/mm] stetig diffbar in [mm]x_{0}[/mm] ist für i=1...n,
>  
>
> Ich verstehe nämlich nicht, wenn gilt  [mm]\pmat{ a_{i1}(x) & a_{i2}(x) & \ldots & a_{in}(x) }[/mm]
>  ist stetig für i=1...n
>  wieso sollte das äquivalent sein zu  
>
> [mm]\pmat{ a_{11}(x) & a_{12}(x) & \cdots & a_{1n}(x) \\ \vdots & & \ddots & \vdots \\ a_{m1}(x) & a_{m2}(x) & \cdots & a_{mn }(x)}[/mm]
> ist stetig,
>  und was bedeut stetigkeit, bei einer Matrix mit funktion
> als Einträgen? Ich kenn noch nicht mal eine Norm um für
> sowas stetigkeit nachzuprüfen.

ich habe Dein Skript jetzt nicht komplett durchforstet, ob ihr Normen für Matrizen definiert habt, aber schau mal []in dieses Skript rein, insbesondere auf:

[mm] $\bullet$ [/mm] Seite 186 in Satz 19.10

[mm] $\bullet$ [/mm] Seite 187 in Satz 19.11

[mm] $\bullet$ [/mm] Seite 188 in Satz 19.13

Aber in Deinem Skript wird das auch etwas anders begründet, schau Doch einfach mal in den Beweis zu Satz 7.1.8 auf Seite 75 in Eurem Skript:
... da Konvergenz im [mm] $\IR^m$ [/mm] komponentenweise Konvergenz entspricht...

Diese Aussage findest Du auch []hier in Bemerkung 8.17.

Sie ist auch von der Wahl der Norm im [mm] $\IR^m$ [/mm] unabhängig, da die Normen im [mm] $\IR^m$ [/mm] bekanntlich äquivalent sind, vgl. etwa []hier
.
Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]