matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartiell integriert: (cosx)^2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - partiell integriert: (cosx)^2
partiell integriert: (cosx)^2 < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partiell integriert: (cosx)^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Di 27.09.2005
Autor: scratchy

Hallo,
das unbestimmte Integral  [mm] \integral_{}^{} {cos^{2}x dx} [/mm] soll lt. Aufgabenstellung partiell integriert werden.

mein Lösungsansatz:
[mm] \integral_{}^{} {cos^{2}x dx} [/mm] = [mm] \integral_{}^{} [/mm] {cos(x) * cos(x) dx}

[mm] \integral_{}^{} [/mm] {u(x)*v'(x) dx} = u(x) * v(x) - [mm] \integral_{}^{} [/mm] {u'(x)*v(x) dx}

u(x) = cos(x), u'(x) = -sin(x)
v(x) = sin(x), v'(x) = cos(x)
eingesetzt:
[mm] \integral_{}^{} [/mm] {cos(x) * cos(x) dx} = cos(x)*sin(x) - [mm] \integral_{}^{} [/mm] {-sin(x) * sin(x) dx}
=  cos(x)*sin(x) + [mm] \integral_{}^{} [/mm] {sin(x) * sin(x) dx}

nun bin ich aber auch nicht weiter :-(

Ich habe es dann via Substitution probiert:

laut Tafelwerk ist (warum auch immer) [mm] cos^{2}(x) [/mm] =  [mm] \bruch{1}{2} [/mm] +  [mm] \bruch{cos(2x)}{2} [/mm]

[mm] \integral_{}^{} {\bruch{1}{2} + \bruch{cos(2x)}{2} dx} [/mm] =  [mm] \integral_{}^{} {\bruch{1}{2} dx} [/mm] +  [mm] \bruch{1}{2} [/mm] *  [mm] \integral_{}^{} [/mm] {cos(2x) dx}

2x habe ich z gesetzt, so ist dx = [mm] \bruch{dz}{2} [/mm]

=  [mm] \integral_{}^{} {\bruch{1}{2} dx} [/mm] +  [mm] \bruch{1}{2} [/mm] *  [mm] \integral_{}^{} [/mm] {cos(z) * [mm] \bruch{1}{2} [/mm] dz}
= [mm] \bruch{x}{2} [/mm] + [mm] \bruch{sin(z)}{4} [/mm] +c
= [mm] \bruch{x}{2} [/mm] + [mm] \bruch{sin(2x)}{4} [/mm] +c
(laut Lösung stimmt das)

Nun sollte ja eigentlich alles ok sein. Aber die Aufgabe sollte halt wie gesagt partiell gelöst werden und ich wäre für Hinweise/Vorschläge sehr dankbar.

        
Bezug
partiell integriert: (cosx)^2: trigonometrischer Pythagoras
Status: (Antwort) fertig Status 
Datum: 11:32 Di 27.09.2005
Autor: Roadrunner

Hallo scratchy!


Laut dem trigonometrischen Pythagoras gilt doch:

[mm] $\sin^2(x) [/mm] + [mm] \cos^2(x) [/mm] \ = \ 1$


Damit kannst Du den Ausdruck [mm] $\sin^2(x)$ [/mm] im hinteren Integral ersetzen durch:

[mm] $\sin^2(x) [/mm] \ = \ 1 - [mm] \cos^2(x)$ [/mm]


Kommst Du damit nun zum gewünschten Ziel?


Gruß vom
Roadrunner


Bezug
        
Bezug
partiell integriert: (cosx)^2: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Di 27.09.2005
Autor: Herby

Hi Scratchy,

beachte noch, dass hinter dem neuen Integral das alte wieder auftauch.
Du hast dann links 2*I stehen, durch welche (nämlich die 2) du dann teilen musst. Daher der Faktor [mm] \bruch{1}{2}. [/mm]

Gruß
Herby

Bezug
                
Bezug
partiell integriert: (cosx)^2: :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Di 27.09.2005
Autor: Roadrunner

Hallo Herby!


> beachte noch, dass hinter dem neuen Integral das alte
> wieder auftaucht.

Alte Petze ;-) ...


Gruß vom
Roadrunner


Bezug
                        
Bezug
partiell integriert: (cosx)^2: mmmhhh
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Di 27.09.2005
Autor: Herby

[grins]

Bezug
                
Bezug
partiell integriert: (cosx)^2: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 Di 27.09.2005
Autor: scratchy


> Hallo Herby!
>  
>
> > beachte noch, dass hinter dem neuen Integral das alte
> > wieder auftaucht.
>  
> Alte Petze ;-) ...
>  
>
> Gruß vom
>  Roadrunner
>  

:-)
Ob ihrs mir glaubt oder nicht, das ist mir eben von alleine aufgefallen.

Aber auf den Tipp mit dem Winkelpythagoras wäre ich nicht gekommen.

zur Vervollständigung noch der Rest des Lösungsweges:

=  cos(x)*sin(x) + [mm] \integral_{}^{} {sin^{2}(x) dx} [/mm]
=  cos(x)*sin(x) + [mm] \integral_{}^{} [/mm] {1 - [mm] cos^{2}(x) [/mm] dx}
=  cos(x)*sin(x) + x - [mm] \integral_{}^{} {cos^{2}(x) dx} [/mm] | + [mm] \integral_{}^{} {cos^{2}(x) dx} [/mm]
2 [mm] \integral_{}^{} {cos^{2}(x) dx} [/mm] = cos(x)*sin(x) + x
= [mm] \bruch{cos(x)*sin(x) + x}{2} [/mm]

durch ein Blick ins schlaue Tafelwerk ist:
cos(x)*sin(y) = [mm] \bruch{1}{2}(sin(x-y) [/mm] + sin(x+y))
da hier x=y:
= [mm] \bruch{1}{2}(sin(x-x) [/mm] + sin(x+x))
= [mm] \bruch{1}{2}(sin(0) [/mm] + sin(2x))
[mm] =\bruch{sin(2x)}{2} [/mm]

[mm] \bruch{cos(x)*sin(x) + x}{2} [/mm] = [mm] \bruch{\bruch{sin(2x)}{2} + x}{2} [/mm]
= [mm] \bruch{sin(2x)}{4} [/mm] + [mm] \bruch{x}{2} [/mm]

(Konstante ist jetzt mal weggelassen)

Bezug
                        
Bezug
partiell integriert: (cosx)^2: @Herby
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Di 27.09.2005
Autor: Roadrunner

Hallo Herby!


> Ob ihrs mir glaubt oder nicht, das ist mir eben von
> alleine aufgefallen.

Siehste mal ... war also gar nicht nötig gewesen! ;-)


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]