matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationpart. diff.bar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - part. diff.bar
part. diff.bar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

part. diff.bar: Klausurvorbereitung
Status: (Frage) beantwortet Status 
Datum: 15:39 Di 13.07.2010
Autor: carlosfritz

Aufgabe
f: [mm] \IR^{2} \rightarrow \IR [/mm] ist def. durch f(0,0) := 0 und f(x,y) := [mm] \bruch{x^{3}y-xy^{3}}{x^{2}+y^{2}} [/mm]

Ist d stetig part. diff.bar?

Hallo,
anhand dieser Aufgabe möchte ich einmal sicherstellen, ob ich für eine solche Aufgabe auch alles beachte.

Es ist also zz.: [mm] \bruch{\delta f}{\delta x} [/mm] und [mm] \bruch{\delta f}{\delta y} [/mm] existieren und sind stetig.

1.) f ist part nach x diff.bar für [mm] (x,y)\not= [/mm] (0,0), weil Komposition aus diff.baren Funktionen. Für (x,y)= (0,0) ist zz [mm] \limes_{h\rightarrow 0}\bruch{f(h,0)-0}{h}=0 [/mm]
2.) f ist part nach y diff.bar für [mm] (x,y)\not= [/mm] (0,0), weil Komposition aus diff.baren Funktionen. Für (x,y)= (0,0) ist zz [mm] \limes_{h\rightarrow 0}\bruch{f(0,h)-0}{h}=0 [/mm]

3.)  [mm] \bruch{\delta f}{\delta x} [/mm] und [mm] \bruch{\delta f}{\delta y} [/mm] berechnen.

Mal als Beispiel [mm] \bruch{\delta f}{\delta x}=\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}} [/mm] für [mm] (x,y)\not=(0,0) (\bruch{\delta f}{\delta x}(0,0) [/mm] = 0)

4.) das ist wieder stetig für [mm] (x,y)\not= [/mm] (0,0) also bleibt zz.: [mm] \limes_{(x,y)\rightarrow (0,0)}\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}} [/mm] = 0

Damit wäre dann auch [mm] \bruch{\delta f}{\delta x}(0,0) [/mm] = 0 gezeigt.

soweit richtig? nichts vergessen.

ich weiss nun nur noch nicht wie ich [mm] \limes_{(x,y)\rightarrow (0,0)}\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}} [/mm] = 0 zeigen soll.

gerade die Hoch 3 machen ja Schwierigkeiten. - Obwohl ich kann doch auch den Betrag nehmen, das ist ja gar noch stärker. Oder?

Ich versuche mal weiter abzuschätzen.

edit:
okay, mit dem Betrag ging es schnell voran.

da komme ich dann auf   [mm] |\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}| \le 3|y|+2x^{2}|y|. [/mm]

Vielen Dank und gruß,
carlos

        
Bezug
part. diff.bar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Di 13.07.2010
Autor: fred97


> f: [mm]\IR^{2} \rightarrow \IR[/mm] ist def. durch f(0,0) := 0 und
> f(x,y) := [mm]\bruch{x^{3}y-xy^{3}}{x^{2}+y^{2}}[/mm]
>  
> Ist d stetig part. diff.bar?
>  Hallo,
>  anhand dieser Aufgabe möchte ich einmal sicherstellen, ob
> ich für eine solche Aufgabe auch alles beachte.
>  
> Es ist also zz.: [mm]\bruch{\delta f}{\delta x}[/mm] und
> [mm]\bruch{\delta f}{\delta y}[/mm] existieren und sind stetig.
>  
> 1.) f ist part nach x diff.bar für [mm](x,y)\not=[/mm] (0,0), weil
> Komposition aus diff.baren Funktionen. Für (x,y)= (0,0)
> ist zz [mm]\limes_{h\rightarrow 0}\bruch{f(h,0)-0}{h}=0[/mm]
>  2.) f
> ist part nach y diff.bar für [mm](x,y)\not=[/mm] (0,0), weil
> Komposition aus diff.baren Funktionen. Für (x,y)= (0,0)
> ist zz [mm]\limes_{h\rightarrow 0}\bruch{f(0,h)-0}{h}=0[/mm]
>  
> 3.)  [mm]\bruch{\delta f}{\delta x}[/mm] und [mm]\bruch{\delta f}{\delta y}[/mm]
> berechnen.
>  
> Mal als Beispiel [mm]\bruch{\delta f}{\delta x}=\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}[/mm]
> für [mm](x,y)\not=(0,0) (\bruch{\delta f}{\delta x}(0,0)[/mm] = 0)
>  
> 4.) das ist wieder stetig für [mm](x,y)\not=[/mm] (0,0) also bleibt
> zz.: [mm]\limes_{(x,y)\rightarrow (0,0)}\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}[/mm]
> = 0
>  
> Damit wäre dann auch [mm]\bruch{\delta f}{\delta x}(0,0)[/mm] = 0
> gezeigt.
>  
> soweit richtig? nichts vergessen.
>  
> ich weiss nun nur noch nicht wie ich
> [mm]\limes_{(x,y)\rightarrow (0,0)}\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}[/mm]
> = 0 zeigen soll.
>  
> gerade die Hoch 3 machen ja Schwierigkeiten.


Tipp: Polarkoordinaten: $x= r [mm] cos(\phi), [/mm] y = r [mm] sin(\phi)$ [/mm]




>  - Obwohl ich
> kann doch auch den Betrag nehmen, das ist ja gar noch
> stärker. Oder?
>  
> Ich versuche mal weiter abzuschätzen.
>  
> edit:
>  okay, mit dem Betrag ging es schnell voran.
>  
> da komme ich dann auf  
> [mm]|\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}| \le 3|y|+2x^{2}|y|.[/mm]

Wie bist Du darauf gekommen ?

FRED

>  
> Vielen Dank und gruß,
>  carlos


Bezug
                
Bezug
part. diff.bar: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:34 Di 13.07.2010
Autor: carlosfritz


> > f: [mm]\IR^{2} \rightarrow \IR[/mm] ist def. durch f(0,0) := 0 und
> > f(x,y) := [mm]\bruch{x^{3}y-xy^{3}}{x^{2}+y^{2}}[/mm]
>  >  
> > Ist d stetig part. diff.bar?
>  >  Hallo,
>  >  anhand dieser Aufgabe möchte ich einmal sicherstellen,
> ob
> > ich für eine solche Aufgabe auch alles beachte.
>  >  
> > Es ist also zz.: [mm]\bruch{\delta f}{\delta x}[/mm] und
> > [mm]\bruch{\delta f}{\delta y}[/mm] existieren und sind stetig.
>  >  
> > 1.) f ist part nach x diff.bar für [mm](x,y)\not=[/mm] (0,0), weil
> > Komposition aus diff.baren Funktionen. Für (x,y)= (0,0)
> > ist zz [mm]\limes_{h\rightarrow 0}\bruch{f(h,0)-0}{h}=0[/mm]
>  >  
> 2.) f
> > ist part nach y diff.bar für [mm](x,y)\not=[/mm] (0,0), weil
> > Komposition aus diff.baren Funktionen. Für (x,y)= (0,0)
> > ist zz [mm]\limes_{h\rightarrow 0}\bruch{f(0,h)-0}{h}=0[/mm]
>  >  
> > 3.)  [mm]\bruch{\delta f}{\delta x}[/mm] und [mm]\bruch{\delta f}{\delta y}[/mm]
> > berechnen.
>  >  
> > Mal als Beispiel [mm]\bruch{\delta f}{\delta x}=\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}[/mm]
> > für [mm](x,y)\not=(0,0) (\bruch{\delta f}{\delta x}(0,0)[/mm] = 0)
>  >  
> > 4.) das ist wieder stetig für [mm](x,y)\not=[/mm] (0,0) also bleibt
> > zz.: [mm]\limes_{(x,y)\rightarrow (0,0)}\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}[/mm]
> > = 0
>  >  
> > Damit wäre dann auch [mm]\bruch{\delta f}{\delta x}(0,0)[/mm] = 0
> > gezeigt.
>  >  
> > soweit richtig? nichts vergessen.
>  >  
> > ich weiss nun nur noch nicht wie ich
> > [mm]\limes_{(x,y)\rightarrow (0,0)}\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}[/mm]
> > = 0 zeigen soll.
>  >  
> > gerade die Hoch 3 machen ja Schwierigkeiten.
>  
>
> Tipp: Polarkoordinaten: [mm]x= r cos(\phi), y = r sin(\phi)[/mm]
>  Hmm, damit haben wir noch nie gearbeitet.
>
>
>
> >  - Obwohl ich

> > kann doch auch den Betrag nehmen, das ist ja gar noch
> > stärker. Oder?
>  >  
> > Ich versuche mal weiter abzuschätzen.
>  >  
> > edit:
>  >  okay, mit dem Betrag ging es schnell voran.
>  >  
> > da komme ich dann auf  
> >
> [mm]|\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}| \le 3|y|+2x^{2}|y|.[/mm]
>  
> Wie bist Du darauf gekommen ?

gar nicht :) aber:
[mm] |\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}| \le [/mm] 3|y|+2|y|.

Denn: [mm] |\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}-\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}| \le |\bruch{3x^{2}y-y^{3}}{x^{2}+y^{2}}|+|\bruch{2x^{4}y-2x^{2}y^{3}}{(x^{2}+y^{2})^{2}}| \le |y||\bruch{3x^{2}-y^{2}+4y^{2}}{x^{2}+y^{2}}|+2x^{2}|y||\bruch{x^{2}-y^{2}+2y^{2}}{(x^{2}+y^{2})^{2}}| \le 3|y|\bruch{x^{2}+y^{2}}{x^{2}+y^{2}}+2x^{2}|y|\bruch{x^{2}+y^{2}}{(x^{2}+y^{2})^{2}} \le 3|y|+2x^2|y|\bruch{1}{x^{2}} [/mm]

>  
> FRED
>  >  
> > Vielen Dank und gruß,
>  >  carlos
>  


Dann steht hier, dass [mm] \bruch{\delta}{\delta x}( \bruch{\delta f}{\delta y})(0,0)=1\not=-1= \bruch{\delta}{\delta y}( \bruch{\delta f}{\delta x})(0,0) [/mm]

Wie zeige ich denn sowas?
Hier kann ich ja schlecht abschätzen (sowie oben) oder doch?


Bezug
                        
Bezug
part. diff.bar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 19.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]