matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationpart. Ableitung Skalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - part. Ableitung Skalarprodukt
part. Ableitung Skalarprodukt < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

part. Ableitung Skalarprodukt: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:28 Mi 24.11.2010
Autor: ilfairy

Aufgabe
Gesucht sind die partiellen Ableitungen der Funktion:
[mm]f:\IR^2\setminus\left\{0 \right\} \rightarrow\IR[/mm]
[mm]f(x) = \frac{\left\langle Ax,x \right\rangle}{\left\langle x,x \right\rangle}[/mm]

Hallo meine Lieben!

Nun.. meine Idee hierzu: Zu Nenner und Zähler mithilfe der Limes-Definition die partiellen Ableitungen in x- und y-Richtung bestimmen. Danach in die Quotientenregel einsetzen und vereinfachen.


Kann man das so machen? Oder gibt es einen Trick beim Skalarprodukt, mit dem es einfacher geht?


Liebe Grüße!

ilfairy

        
Bezug
part. Ableitung Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 24.11.2010
Autor: fred97


> Gesucht sind die partiellen Ableitungen der Funktion:
>  [mm]f:\IR^2\setminus\left\{0 \right\} \rightarrow\IR[/mm]
>  [mm]f(x) = \frac{\left\langle Ax,x \right\rangle}{\left\langle x,x \right\rangle}[/mm]
>  
> Hallo meine Lieben!
>  
> Nun.. meine Idee hierzu: Zu Nenner und Zähler mithilfe der
> Limes-Definition die partiellen Ableitungen in x- und
> y-Richtung bestimmen. Danach in die Quotientenregel
> einsetzen und vereinfachen.
>  
>
> Kann man das so machen? Oder gibt es einen Trick beim
> Skalarprodukt, mit dem es einfacher geht?
>  

Für eine $ 2 [mm] \times [/mm] 2$ -Matrix A gehts doch einfacher !  Sei  [mm] $A=\pmat{ a & b \\ c & d }$ [/mm]

Für x=(u,v) [mm] \IR^2 [/mm]  \ { (0,0) }  ist dann

  $f(x)=f(u,v)= [mm] \bruch{a*u^2+(b+c)*uv+d*v^2}{u^2+v^2}$ [/mm]

FRED

>
> Liebe Grüße!
>  
> ilfairy


Bezug
                
Bezug
part. Ableitung Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mi 24.11.2010
Autor: ilfairy

Hallo Fred!

Erstmal danke für deine schnelle Antwort!

Im nächsten Aufgabenteil soll ich auch noch die zweiten und dritten Ableitungen bilden - spätestens dann arten die Terme ziemlich aus.
Zum Beispiel die erste Ableitung nach u:

[mm]f_{u}(u,v) = \frac{(2*a*u+(b+c)*v)*(u^2+v^2)-2*u*(a*u^2+(b+c)*u*v+d*v^2)}{(u^2+v^2)^2}[/mm]

Wenn ich diese noch einmal nach u ableiten würde.. puuhhh - das würde dauern..


Bezug
                        
Bezug
part. Ableitung Skalarprodukt: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 10:55 Di 30.11.2010
Autor: Loddar

Hallo ilfairy!


Das sieht soweit richtig aus. Fasse nun zunächst im Zähler zusammenn, da vereinfacht sich doch einiges.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]