matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationparameterabhängige Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - parameterabhängige Integration
parameterabhängige Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parameterabhängige Integration: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:45 Fr 18.06.2010
Autor: plusminus

Aufgabe
Berechnen Sie [mm] F(\wurzel{e}), F'(\wurzel{e}), F''(\wurzel{e}) [/mm] für
F(s)= [mm] \integral_{e}^{s^2} [/mm] ln (s ln [mm] x)\, [/mm] dx  , s>1


Ich habe nun zunächst versucht die erste Ableitung zu bilden mit Hilfe der Leibnizformel und komme dann auf:

F'(s)= [mm] \integral_{e}^{s^2} [/mm] 1/s dx + ln (s* [mm] ln(s^2))*2s [/mm] - ln (s) *e

weis aber nicht ob das stimmt?! womit ich auch nicht sicher bin sind die integralgrenzen, weill wenn ich für [mm] s^2 [/mm] die [mm] \wurzel{e} [/mm] einsetze habe ich ja zweimal die gleiche integralgrenze (in allen drei zu berechnenden Fällen) - bei gleichen Grenzen kommt doch dann immer 0 raus, oder habe ich da irgendwo nen Knoten? Wäre sehr nett wenn mir jemand helfen könnte!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
parameterabhängige Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Fr 18.06.2010
Autor: MathePower

Hallo plusminus,

> Berechnen Sie [mm]F(\wurzel{e}), F'(\wurzel{e}), F''(\wurzel{e})[/mm]
> für
> F(s)= [mm]\integral_{e}^{s^2}[/mm] ln (s ln [mm]x)\,[/mm] dx  , s>1
>  
>
> Ich habe nun zunächst versucht die erste Ableitung zu
> bilden mit Hilfe der Leibnizformel und komme dann auf:
>  
> F'(s)= [mm]\integral_{e}^{s^2}[/mm] 1/s dx + ln (s* [mm]ln(s^2))*2s[/mm] - ln
> (s) *e
>
> weis aber nicht ob das stimmt?! womit ich auch nicht sicher


Der letzte Ausdruck [mm]-\ln\left(s\right)*e[/mm] fällt weg,
da die untere Grenze des Integrals nicht von s abhängig ist.


> bin sind die integralgrenzen, weill wenn ich für [mm]s^2[/mm] die
> [mm]\wurzel{e}[/mm] einsetze habe ich ja zweimal die gleiche
> integralgrenze (in allen drei zu berechnenden Fällen) -
> bei gleichen Grenzen kommt doch dann immer 0 raus, oder
> habe ich da irgendwo nen Knoten? Wäre sehr nett wenn mir
> jemand helfen könnte!


Nein, da hast Du keinen Knoten.


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
parameterabhängige Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Fr 18.06.2010
Autor: plusminus

Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]