matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikp-stochastische Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - p-stochastische Konvergenz
p-stochastische Konvergenz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-stochastische Konvergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:02 Do 23.06.2005
Autor: SoB.DarkAngel

Hallo!
Weiß bei folgender Aufgabe nicht weiter:

[mm] (X_{n})_{n \in \IN} [/mm] und [mm] (Y_{n})_{n \in \IN} [/mm] seien reellwertige Zufallsvariable auf [mm] (\Omega, \cal{A}, \cal{P}) [/mm] mit [mm] X_{n} [/mm] konvergiert p-stochastisch gegen [mm] X_{0} [/mm] und  [mm] Y_{n} [/mm] konvergiert p-stochastisch gegen  [mm] Y_{0}. [/mm]
Zeigen sie, dass
1.  [mm] X_{n}+ Y_{n} [/mm] konvergiert p-stochastisch gegen  [mm] X_{0}+Y_{0} [/mm]
2.  [mm] X_{n}*Y_{n} [/mm] konvergiert p-stochastisch gegen  [mm] X_{0}*Y_{0} [/mm]
3. falls [mm] f:\IR\to\IR [/mm] stetig, so [mm] f(X_{n}) [/mm] konvergiert p-stochastisch gegen [mm] f(X_{0}) [/mm]
gelten!

1. und 2. sind für mich völlig logisch, allerdings weiß ich nicht, wie ich das dann noch beweisen soll... Kann mir jemand helfen?

        
Bezug
p-stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Do 23.06.2005
Autor: Stefan

Hallo!

Ich mache für dich mal die erste Teilaufgabe. Dann hast du ja einen Anhaltspunkt für die beiden anderen Teilaufgaben und kannst dazu eigene Ansätze beisteuern (vergleiche dazu auch die Forenregeln).

Es sei [mm] $\varepsilon>0$ [/mm] beliebig gewählt. Dann gilt für alle $n [mm] \in \IN$: [/mm]

[mm] $P(|(X_n+Y_n)-(X_0+Y_0)| \ge \varepsilon)$ [/mm]

[mm] $\le P(|X_n-X_0| [/mm] + [mm] |Y_n-Y_0| \ge \varepsilon)$ [/mm]

[mm] $\le P(\{|X_n-X_0| \ge\frac{\varepsilon}{2}\} \cup \{|Y_n-Y_0| \ge \frac{\varepsilon}{2}\})$ [/mm]

[mm] $\le P(|X_n-X_0| \ge \frac{\varepsilon}{2}) [/mm] + [mm] P(|Y_n-Y_0| \ge \frac{\varepsilon}{2})$. [/mm]

Damit folgt aus [mm] $\lim\limits_{n \to \infty} P(|X_n-X_0| \ge \frac{\varepsilon}{2})=0$ [/mm] und [mm] $\lim\limits_{n \to \infty} P(|Y_n-Y_0) \ge \frac{\varepsilon}{2}) [/mm] =0$ auch

[mm] $\lim\limits_{n \to \infty} P(|(X_n+Y_n)-(X_0+Y_0)| \ge \varepsilon) [/mm] =0$.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]