matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriep-adische Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - p-adische Zahlen
p-adische Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-adische Zahlen: Beispiele zum Rechnen
Status: (Frage) überfällig Status 
Datum: 13:53 So 17.01.2010
Autor: Linda89

Aufgabe
Rechnen mit p-adischen Zahlen: Umrechnen, Existenz etc

Hallo,

ich habe ein bisschen Probleme mit den p-adischen Zahlen und hab noch niemand (und auch noch keine Webseite oder Buch) gefunden, das mir gut weiterhelfen konnte. Meine Frage ist: Wir rechne ich Zahlen um (von p-adisch in normal und andersrum), wie zeige ich, dass eine Zahl eine p-adische Zahl ist, wie gehe ich im Allgemeinen mit den p-adischen Zahlen um (die letzte Frage ist wohl ziemlich schwerz zu beantworten).

Also zum Beispiel wie schaue ich, ob [mm] \bruch{1}{2} [/mm] in [mm] \IZ_{5} [/mm] liegt? Oder wie rechne ich das um?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
p-adische Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 03.02.2010
Autor: felixf

Hallo!

> Rechnen mit p-adischen Zahlen: Umrechnen, Existenz etc
>  
> ich habe ein bisschen Probleme mit den p-adischen Zahlen
> und hab noch niemand (und auch noch keine Webseite oder
> Buch) gefunden, das mir gut weiterhelfen konnte.

Vielleicht hilft dir []das hier?

> Meine
> Frage ist: Wir rechne ich Zahlen um (von p-adisch in normal
> und andersrum), wie zeige ich, dass eine Zahl eine
> p-adische Zahl ist, wie gehe ich im Allgemeinen mit den
> p-adischen Zahlen um (die letzte Frage ist wohl ziemlich
> schwerz zu beantworten).
>  
> Also zum Beispiel wie schaue ich, ob [mm]\bruch{1}{2}[/mm] in
> [mm]\IZ_{5}[/mm] liegt? Oder wie rechne ich das um?

Das es drinnen liegt ist sehr einfach: da 2 modulo 5 eine Einheit ist, ist [mm] $\frac{1}{2}$ [/mm] ein Element in [mm] $\IZ_5$. [/mm] Diese Aussage kann man u.a. konstruktiv beweisen, mit Hilfe des []Henselschen Lemmas:

Erstmal ist 2 nicht durch 5 teilbar, womit 2 in [mm] $\IZ/5\IZ$ [/mm] invertierbar ist. Man sieht schnell, dass $2 [mm] \cdot [/mm] 3 [mm] \equiv [/mm] 1 [mm] \pmod{5}$ [/mm] ist. Jetzt wendet man Hensels Lemma an, um eine Loesung von $2 [mm] \cdot [/mm] x [mm] \equiv [/mm] 1 [mm] \pmod{5^2}$ [/mm] daraus zu bekommen: das Polynom $f(x) = 2 x - 1$ hat modulo 5 die Nullstelle 3, womit es nach dem Lemma genau eine Nullstelle $x$ modulo [mm] $5^2$ [/mm] gibt welche kongruent zu 3 modulo 5 ist. Allgemeiner: zu jedem $n [mm] \in \IN$ [/mm] gibt es genau ein [mm] $x_n \in \{ 0, \dots, 5^n - 1 \}$ [/mm] mit [mm] $f(x_n) \equiv [/mm] 0 [mm] \pmod{5^n}$ [/mm] und [mm] $x_n \equiv [/mm] 3 [mm] \pmod{5^n}$. [/mm]

Mit diesen [mm] $x_n$ [/mm] kannst du [mm] $\frac{1}{2}$ [/mm] in [mm] $\IZ_5$ [/mm] konstruieren: du kannst [mm] $x_n [/mm] = [mm] z_n 5^{n - 1} [/mm] + [mm] x_{n-1}$, [/mm] $n > 0$ (wobei [mm] $x_0 [/mm] = 0$) schreiben mit [mm] $z_n \in \{ 0, 1, 2, 3, 4 \}$; [/mm] dann ist [mm] $\frac{1}{2} [/mm] = ... [mm] z_5 z_4 z_3 z_2 z_1 [/mm] = [mm] \sum_{n=0}^\infty z_{n+1} 5^n$ [/mm] (es ist [mm] $z_1 [/mm] = 3$).

Aber nun magst du dich fragen: wieso ist das alles konstruktiv? Weil man das Henselsche Lemma mit Hilfe des []Newton-Verfahrens konstruktiv beweisen kann! (Auch wenn das jezt sehr abenteuerlich klingt.)

(Alternativ kannst du [mm] $x_n$ [/mm] auch jeweils mit dem Erweiterten Euklidischen Algorithmus bestimmen, halt so wie man modulo [mm] $5^n$ [/mm] immer Inverse bestimmt.)

Um etwa ein $x$ zu finden mit $2 [mm] \cdot [/mm] x [mm] \equiv [/mm] 1 [mm] \pmod{5^{10}}$, [/mm] setzt man [mm] $x_0 [/mm] := 3$ (erste Annaeherung an das gesuchte $x$, es stimmt naemlich modulo 5) und [mm] $x_n [/mm] := [mm] x_{n-1} [/mm] - 3 (2 [mm] x_{n-1} [/mm] - 1)$ (beachte, dass [mm] $f'(x_{n-1})$ [/mm] durch [mm] $f'(x_0)$ [/mm] ersetzt wurde -- das funktioniert hier!). Dann ist [mm] $x_1 [/mm] = 9765613$, [mm] $x_2 [/mm] = 63$, [mm] $x_3 [/mm] = 9765313$, [mm] $x_4 [/mm] = 1563$, [mm] $x_5 [/mm] = 9757813$, [mm] $x_6 [/mm] = 39063$, [mm] $x_7 [/mm] = 9570313$, [mm] $x_8 [/mm] = 976563$, [mm] $x_9 [/mm] = 4882813 = [mm] x_{10} [/mm] = [mm] x_{11} [/mm] = [mm] \dots$ [/mm]  (jeweils modulo [mm] $5^{10}$, [/mm] berechnet mit Maple).

Wenn man's nachrechnet, sieht man sofort $2 [mm] \cdot [/mm] 4882813 = 9765626 = 1 + [mm] 5^{10}$. [/mm] (Es gilt uebrigens $2 [mm] \cdot x_n \equiv [/mm] 1 [mm] \pmod{5^{n + 1}}$.) [/mm]

Nun ist $4882813 = 3 + 2 [mm] \cdot [/mm] 5 + 2 [mm] \cdot 5^2 [/mm] + 2 [mm] \cdot 5^3 [/mm] + 2 [mm] \cdot 5^4 [/mm] + 2 [mm] \cdot 5^5 [/mm] + 2 [mm] \cdot 5^6 [/mm] + 2 [mm] \cdot 5^7 [/mm] + 2 [mm] \cdot 5^8 [/mm] + 2 [mm] \cdot 5^9$, [/mm] womit man sieht, dass [mm] $\frac{1}{2} [/mm] = ...2 2 2 2 2 2 2 2 3$ ist in [mm] $\IZ_5$. [/mm]

LG Felix


Bezug
        
Bezug
p-adische Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 17.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]