matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperp-Sylowgruppen, A_5
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - p-Sylowgruppen, A_5
p-Sylowgruppen, A_5 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-Sylowgruppen, A_5: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:06 Sa 14.11.2015
Autor: sissile

Aufgabe
Ich würde gerne mir die 2-,3- und 5-Sylowgruppen der [mm] A_5 [/mm] anschauen.

Hinweis:
Ich verwende absichtlich nirgends, dass die [mm] A_5 [/mm] einfach ist, denn für den Beweis haben wir die Sylowgruppen gebraucht. Natürlich "darf" ich dass dann hier nicht verwenden.

Hallo,
[mm] |A_5|=2^2*3*5 [/mm]

Sei [mm] s_3 [/mm] die Anzahl der 3 Sylowgruppen. Nach Sylowsätze [mm] s_3|2^2*5, [/mm] d.h. [mm] s_3|20 [/mm] und [mm] s_3 \equiv [/mm] 1 mod 3
[mm] \Rightarrow s_3 \in \{1,4,10\} [/mm]
3-Sylowgruppen haben 3 Elemente, sind also zyklisch und dementsprechend von Element der Ordnung 3 aufgespannt. Eine 3-Sylowgruppe enthält zwei Elemente der Ordnung 3 und das neutrale Element nach Lagrange.
Es gibt [mm] \vektor{5\\ 3}\frac{3!}{3} [/mm] = 20 3-Zyklen. 3-Zyklen sind Elemente der Ordnung 3. Diese lassen sich aufteilen in 10 3-Sylowgruppen
[mm] \{id, (abc),(acb)\} [/mm] ist die Gestalt der 3-Sylogruppen.



Sei [mm] s_5 [/mm] die Anzahl der 5-Sylowgruppen. Nach Sylowsätzen [mm] s_5|2^2*3, [/mm] d.h. [mm] s_5|12 [/mm] und [mm] s_5 \equiv [/mm] 1 mod 5
[mm] \Rightarrow s_5 \in \{1,6\} [/mm]
Durch die gleiche Argumentation wie oben folgt [mm] \{id, (abcde),(acebd),(adbec),(aedcb)\} [/mm] ist die Gestalt der 6 5-Sylowgruppen.



Ich habe nun Probleme bei den 2-Sylowgruppen:
[mm] s_2|3*5, [/mm] d.h. [mm] s_2|15 [/mm] und [mm] s_2 \equiv [/mm] 1 mod 2
[mm] \Rightarrow s_2 \in \{1,3,5,15\} [/mm]
2-Sylowgruppen haben 4Elemente. Gruppen mit 4 Elementen sind entweder zyklisch (isomorph zu [mm] \mathbb{Z}_4) [/mm] oder nicht zyklisch(isomorph zu [mm] \mathbb{Z}_2 \times \mathbb{Z}_2) [/mm]
Zyklische Gruppen der Ordnung 4 müssen von einen Element der Ordnung 4 erzeugt werden. In [mm] A_5 [/mm] gibt es keine Viererzyklen.
Frage 1: Aber gibt es andere Elemente der Ordnung 4 in der [mm] A_5 [/mm] außer den Viererzyklen? Wie beweise ich, dass es keine anderen gibt?

Wäre die Frage geklärt würde folgen die 2-Sylowgruppe enthält 3 Elemente der Ordnung 2 und das neutrale Element.
Frage 2:Wie finde ich nun alle Elemente der Ordnung 2 zusammen oder ist das gar nicht zielführend um die 2-Sylowgruppen zu finden??

Ich habe mir nur überlegt mittels Skriptum und Internet, dass [mm] s_2\not=15. [/mm]
Denn wäre [mm] s_2 [/mm] =15 so schaue ich mir die Operation an:
[mm] \begin{cases}A_5 \times Syl_2(A_5)\rightarrow Syl_2(A_5) \\ (\sigma,S)\mapsto \sigma S \sigma^{-1} \end{cases} [/mm]
Sei [mm] V=\{id, (12)(34),(13)(24),(14)(23)\} [/mm]
[mm] 15=s_2=|\{\sigma S \sigma^{-1}|\sigma \in A_5\}|=[A_5:N_{A_5}(V)]= \frac{60}{|N_{A_5}(V)|} \Rightarrow |N_{A_5}(V)|=4 [/mm] wobei [mm] N_{A_5}(V) [/mm] der Normalisator von V ist(der Normalisator ist in dieser Operation genau der Stabilisator/Isotropoegruppe von S)
Ich verwende oben, dass die Kardinalität der Bahn von S gleich dem Index der Isotropiegruppe von S in [mm] A_5 [/mm] ist.
Nun ist aber V [mm] \subseteq N_{A_5} [/mm] (V) trivialerweise und durch eine Rechnung auch (123) [mm] \in N_{A_5} [/mm] (V). Also [mm] |N_{A_5}(V)| \ge [/mm] 5. Also ein Widerspruch.

Nach Lösung gibt es 5 Sylowgruppen der Gestalt [mm] \{id, (ab)(cd),(ac)(bd),(ad)(bc)\}. [/mm]
LG,
sissi


        
Bezug
p-Sylowgruppen, A_5: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 16.11.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]