matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesorthogonales Komplement
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - orthogonales Komplement
orthogonales Komplement < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonales Komplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Fr 29.06.2007
Autor: Zerwas

Aufgabe
Für einen Unterraum [mm] U\subset\IR^n [/mm] bestimme man das Orthogonal-Komplement [mm] U^\perp [/mm] von U in den Fällen:
(i) [mm] U={x\in\IR^3 | \exists\lambda\in\IR: x=\lambda*e} [/mm] mit [mm] e:=\pmat{1 \\1\\1} [/mm]
(ii) [mm] U={x\in\IR^3 | =0} [/mm] mit [mm] f:=\pmat{1 \\1\\0} [/mm]

Wie mache ich das?
Orthogonal bedeutet dass das Skalarprodukt gleich 0 sein muss ... also in dem Fall dass alle Elemente aus [mm] U^\perp [/mm] othoghonal zu allen Elementen aus U sein müssen. Also [mm] U={\pmat{\lambda \\ \lambda\\ \lambda} | \lambda\in\IR}. [/mm] Sei [mm] U^\perp={\pmat{x \\y\\z}| x,y,z\in\IR} [/mm]
Dann muss gelten:
[mm] \pmat{\lambda \\ \lambda\\ \lambda}*\pmat{x \\y\\z}=0 [/mm]
Also:
[mm] \lambda*x+\lambda*y+\lambda*z=0 [/mm]
Das ist ja aber für endlos viele Beziehungen von x,y,z gegeben wie bestimme ich also ein definiertes Orthogonal-Komplement?

Bei (ii) würde ich einfach die Menge [mm] U^\perp [/mm] definieren als [mm] U^\perp:={x\in\IR^3 | \exists\lambda\in\IR: x=\lambda*f} [/mm] mit [mm] f:=\pmat{1 \\1\\0} [/mm] ...geht das so?

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

Gruß Zerwas

        
Bezug
orthogonales Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 29.06.2007
Autor: Somebody


> Für einen Unterraum [mm]U\subset\IR^n[/mm] bestimme man das
> Orthogonal-Komplement [mm]U^\perp[/mm] von U in den Fällen:
>  (i) [mm]U={x\in\IR^3 | \exists\lambda\in\IR: x=\lambda*e}[/mm] mit
> [mm]e:=\pmat{1 \\1\\1}[/mm]
>  (ii) [mm]U={x\in\IR^3 | =0}[/mm] mit
> [mm]f:=\pmat{1 \\1\\0}[/mm]
>  Wie mache ich das?
>  Orthogonal bedeutet dass das Skalarprodukt gleich 0 sein
> muss ... also in dem Fall dass alle Elemente aus [mm]U^\perp[/mm]
> othoghonal zu allen Elementen aus U sein müssen. Also
> [mm]U={\pmat{\lambda \\ \lambda\\ \lambda} | \lambda\in\IR}.[/mm]
> Sei [mm]U^\perp={\pmat{x \\y\\z}| x,y,z\in\IR}[/mm]
>  Dann muss
> gelten:
>  [mm]\pmat{\lambda \\ \lambda\\ \lambda}*\pmat{x \\y\\z}=0[/mm]
>  
> Also:
>  [mm]\lambda*x+\lambda*y+\lambda*z=0[/mm]
>  Das ist ja aber für endlos viele Beziehungen von x,y,z
> gegeben wie bestimme ich also ein definiertes
> Orthogonal-Komplement?

Also wenn [mm]\lambda \neq 0[/mm] ist (und dies dürfen wir annehmen: der Fall [mm]\lambda = 0[/mm] interessiert hier nicht), dann kannst Du die Gleichung beidseitig durch [mm]\lambda[/mm] dividieren und erhältst die einfachere Beziehung:
[mm]x+y+z=0[/mm]

Und was ist die Lösungsmenge dieser Gleichung? - Anwort: Ein Teilraum von [mm]\IR^3[/mm], da es sich um die Lösungsmenge eines homogen-linearen Gleichungssystems in den Koordinaten von [mm]\IR^3[/mm] handelt. Und zwar kannst Du in dieser Gleichung ja für zwei der drei Variablen, sagen wir [mm]x,y[/mm], beliebige reelle Zahlen einsetzen und dann einfach  [mm]z := -(x+y)[/mm] wählen um eine Lösung zu erhalten. Mit anderen Worten: die Lösungsmenge ist
[mm]U^\perp = \left\{\pmat{x\\y\\-(x+y)}\mid x,y\in \IR\right\}=\left\{x\pmat{1\\0\\-1}+y\pmat{0\\1\\-1}\mid x,y\in \IR\right\}[/mm]


Natürlich würde man in der Regel in einem solchen Falle nicht so krampfadrig vorgehen. Allgemein gilt ja (ich hoffe das hast Du in der Vorlesung schon gehört): ein System von [mm]r[/mm] linear-unabhängigen homogen-linearen Gleichungen in den Koordinaten des [mm]\IR^n[/mm] hat einen linearen Lösungsraum der Dimension [mm]n-r[/mm]. Hier war also [mm]r=1, n=3[/mm]. Daher konnten wir einen linearen Lösungsraum der Dimension [mm]3-1=2[/mm] erwarten. Es genügt daher, zwei linear-unabhängige Vektoren [mm]\perp[/mm] zum einen, den 1-dim Teilraum [mm]U[/mm] aufspannenden Vektor zu finden. Der von diesen beiden linear-unabhängigen Basisvektoren aufgespannte Teilraum ist dann [mm]U^\perp[/mm].

> Bei (ii) würde ich einfach die Menge [mm]U^\perp[/mm] definieren

Uh, nee: definieren kannst Du [mm]U^\perp[/mm] an dieser Stelle nicht, denn [mm]U[/mm] ist Dir vorgegeben und damit ist dessen orthogonales Komplement bereits festgelegt. Wenn man pedatisch nach der Definition des orthogonalen Komplements geht, dann ist also
[mm]U^\perp = \{\vec{y}\in \IR^3\mid \vec{y}\perp U\}[/mm]


> als
> [mm]U^\perp:={x\in\IR^3 | \exists\lambda\in\IR: x=\lambda*f}[/mm]
> mit [mm]f:=\pmat{1 \\1\\0}[/mm] ...geht das so?

Es ist wahr, dass [mm]U^\perp[/mm] in diesem Falle gerade der vom Vektor [mm]\vec{f}[/mm] aufgespannte Teilraum ist. Was Du hier siehst, ist eine grundlegende Eigenschaft des Übergangs zum orthogonalen Komplement an einem Spezialfall: [mm]U^\perp = ([\vec{f}]^\perp)^\perp =[\vec{f}][/mm], wobei ich mit [mm][\vec{f}][/mm] den von [mm]\vec{f}[/mm] aufgespannten Raum bezeichnet habe.
Allgemein gilt also: [mm](U^\perp)^\perp=U[/mm].


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]