matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraorthogonale matrix A, einer sp
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - orthogonale matrix A, einer sp
orthogonale matrix A, einer sp < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale matrix A, einer sp: aufgabe1
Status: (Frage) beantwortet Status 
Datum: 21:31 Sa 09.07.2005
Autor: atilla

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bitt um hilfe. Schreibe am Montag eine wichtige Klausur.Die Aufgabe lautet : Bestimmen Sie die orthogonale Matrix A, die im R2 eine Spiegelung an der Geraden y= -2x beschreibt.
Versuche seit Stunden diese aufgabe zu lösen. habe für x 1 eingesetzt.aber wie gehts weiter.weiß auch das ich die Einheitsmatrix brauche.
Wäre echt nett , wenn mich einer von dieser Aufgabe erlösen würde. DANKE!

        
Bezug
orthogonale matrix A, einer sp: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Sa 09.07.2005
Autor: Stefan

Hallo!

Bezüglich der ON-Basis [mm] $B=\left\{ \pmat{\frac{1}{\sqrt{5}} \\ - \frac{2}{\sqrt{5}}}, \pmat{\frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}} \right\}$ [/mm]

hat die Spiegelung $A$ offenbar die folgende Gestalt:

[mm] $M_B^B(A) [/mm] = [mm] \pmat{1 & 0 \\ 0 & -1}$ [/mm]

(denn ein Vektor, der die Spiegelachse aufspannt, wird auf sich selbst abgebildet; ein Vektor, der senkrecht darauf steht, auf das Negative von sich selbst).

Nun kannst du [mm] $A=M_{E_2}^{E_2}(A)$ [/mm] wie folgt mit Hilfe der Transformationsformel berechnen, wobei [mm] $E_2$ [/mm] die kanonische Standardbasis [mm] $\{e_1,e_2\}$ [/mm] des [mm] $\IR^2$ [/mm] beschreibt:

$A= [mm] M_{E_2}^{E_2}(A) [/mm] = [mm] M_{B}^{E_2}(id_{\IR^2}) \cdot M_B^B(A) \cdot M_{E_2}^B(id_{\IR^2}) [/mm]  = [mm] \pmat{ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}} \cdot \pmat{1 & 0 \\ 0 & -1} \cdot\pmat{ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}}^{-1} [/mm] =  [mm] \pmat{ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}} \cdot \pmat{1 & 0 \\ 0 & -1} \cdot \pmat{ \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}} [/mm] = [mm] \pmat{ - \frac{3}{5} & - \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5}}$. [/mm]

Viele Grüße
Stefan

Bezug
                
Bezug
orthogonale matrix A, einer sp: Keine weiteren fragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Sa 09.07.2005
Autor: atilla

Hallo Stefan,


vielen Dank für die schnelle Antwort.
Habe es verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]