matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenorthogonale Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - orthogonale Abbildungen
orthogonale Abbildungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale Abbildungen: Verständnisfrage
Status: (Frage) überfällig Status 
Datum: 15:10 Sa 04.07.2009
Autor: moerni

Hallo,
ich arbeite gerade in meinem Skript das Kapitel orthogonale (bzw unitäre) Gruppen durch. Wie das definiert ist, habe ich verstanden:
[mm] O(n):=\{ A \in GL_n(R): AA^t=I_n \} [/mm]
[mm] U(n):=\{ A \in GL_n(C): A\overline{A}^t=I_n \} [/mm]
Jetzt haben wir O(n), U(n) für kleine n berechnet.
Zu O(2): jede orthogonale Matrix A (2x2) mit detA=+1 beschreibt eine Drehung, detA=-1 eine orthogonale Spiegelung.
Meine Frage bezieht sich nun auf O(3).
hier hat die darstellende Matrix von f [mm] \in End(R^3) [/mm] ja die Gestalt
A = [mm] \pmat{ \lambda & 0 & 0 \\ 0 & \* & \* \\ 0 & \* & \* } [/mm]
wobei die [mm] \* [/mm] als eine Untermatrix B aufgefasst werden. Wir hatten die Unterscheidungen:
1. Fall detB=+1, dann ist B eine Drehung
2. Fall detB=-1, dann ist B eine Spiegelung

Fragen:
1. Warum muss gelten B [mm] \in [/mm] O(2)?
2. Was kann ich allgemein über die Abbildung A sagen? Kann ich z.B. auch wieder argumentieren: wenn detA=+1 ist (also [mm] \lambda [/mm] = +1 und detB = +1) ist A eine Drehung?
Über eine hilfreiche Antwort wäre ich sehr dankbar.

        
Bezug
orthogonale Abbildungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 08.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]