matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraorthog. Matrix finden, so das
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - orthog. Matrix finden, so das
orthog. Matrix finden, so das < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthog. Matrix finden, so das: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:28 So 16.07.2006
Autor: Jennymaus

Aufgabe
Gegeben sei die symmetrische Matrix
A:= [mm] \pmat{ 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 } [/mm]

(i) Berechnen Sie die Eigenwerte von A.
(ii) Finden Sie eine orthogonale Matrix P, so dass [mm] P^{-1}AP [/mm] Diagonalgestalt hat.

Hallo!

Ich habe ein Problem mit der (ii).
Bei der (i) hab ich raus  [mm] \lambda_{1}=0 [/mm] ,  [mm] \lambda_{2}=3 [/mm]

Aber was muss ich nun bei der (ii) machen?
Mir würde gesagt, dass das irgend was mit Eigenräumen zu tun haben soll...doch wie berechne ich die Eigenräume? Könnte mir das evtl auch jemand an einem Bsp. zeigen?
Wäre echt super nett!

DANKE schonmal!

Jennymaus

        
Bezug
orthog. Matrix finden, so das: Tipp
Status: (Antwort) fertig Status 
Datum: 17:04 So 16.07.2006
Autor: Johlanda

Hallo,

Die 3 ist doppelte Nullstelle!!!
Berechne zu diesen Eigenwerten die Eigenvektoren. Diese schreibst Du dann als Spalten in eine Matrix (=P), dann berechnest Du noch das Inverse von P und schon hast Du die gesuchte Lösung!!!

Viel Spaß damit,

Johlanda

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]