matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperord G = 168, Elemente ord = 7?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - ord G = 168, Elemente ord = 7?
ord G = 168, Elemente ord = 7? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ord G = 168, Elemente ord = 7?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:12 Di 18.01.2011
Autor: Lippel

Aufgabe
Sei G endliche Gruppe mit exakt 168 Elementen. Außerdem habe G keine echten Normalteiler.

Wie viele Elemente der Ordnung 7 gibt es dann?

Hallo,

habe einige Ideen zu der Aufgabe, komme aber nicht bis zu einem Ergebnis.

Zunächst existiert nach den Sylow-Sätzen eine 7-Sylowgruppe von G, da [mm] $ord\:G =168=2^3*3*7\:$. [/mm] Bezeichnen wir diese mit H. Ist $h [mm] \in [/mm] H [mm] \Rightarrow ord\:h\:|\: ord\:H [/mm] = 7 [mm] \Rightarrow ord\:h \in \{1,7\}$ [/mm]
Sei [mm] $n_7\:$ [/mm] die Anzahl der 7-Sylowgruppen, dann gilt: [mm] $n_7 \:|\:[G:H] [/mm] = [mm] 2^3*3 [/mm] = 24$ und [mm] $n_7 \equiv [/mm] 1 [mm] \:mod\:7$ [/mm]

Wäre [mm] $n_7=1\:$, [/mm] so wäre die einzige 7-Sylowgruppe auch Normalteiler in G, das ist nach Voraussetzung ausgeschlossen. Also muss [mm] $n_7 [/mm] = 8$ aus obigen Beziehungen folgen.

Jede der 7-Sylowgruppen enthält ein Element der Ordnung 1 und sechs der Ordnung 7, denn es gibt nur ein neutrales Element und wir habe für Elemente von 7-Sylowuntergruppen gezeigt, dass deren Ordnung 1 oder 7 sein muss.

Woher weiß ich nun welche Elemente der Ordnung 7 in mehreren 7-Sylowgruppen enthalten sind? Gibt es solche überhaupt?
Ich denke es gibt sie nicht, denn die 7-Sylowgruppen werden ja von den Elementen der Ordnung 7 erzeugt, also müssen sie doch mit Ausnahme der 1 disjunkt sein oder?

Und gibt es außerhalb der 7-Sylowgruppen Elemente der Ordnung 7, die in keiner 7-Sylowgruppe enthalten sind? Ich meine nein, denn man könnte sich ja einfach die von dem Elemente erzeugte Untergruppe betrachten, die hätte wieder Ordnung 7 und wäre folglich eine 7-Sylowgruppe.

Also, hier geht bei mir noch einiges durcheinander, würde mich deshalb sehr über Rat freuen

LG Lippel


        
Bezug
ord G = 168, Elemente ord = 7?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Di 18.01.2011
Autor: statler

Guten Morgen!

Deine Überlegungen weisen doch in die richtige Richtung. Außerdem gebe ich dir zur Vertiefung noch diesen []Hinweis.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
ord G = 168, Elemente ord = 7?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 Di 18.01.2011
Autor: Lippel

Hallo Dieter,

vielen Dank für deine Hilfe!

LG Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]