matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesoffene Überdeckung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - offene Überdeckung
offene Überdeckung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene Überdeckung: Idee
Status: (Frage) beantwortet Status 
Datum: 18:40 Di 03.08.2010
Autor: fagottator

Kann mir jemand den Begriff der offenen Überdeckung erklären? Ich kann damit noch nicht wirklich etwas anfangen. Da unser Prof damit jedoch unter anderem Kompaktheit einer Menge definiert hat, wäre es schon schön, wenn ich das kapieren würd.

LG fagottator

        
Bezug
offene Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Di 03.08.2010
Autor: schachuzipus

Hallo fagottator,

> Kann mir jemand den Begriff der offenen Überdeckung
> erklären? Ich kann damit noch nicht wirklich etwas
> anfangen. Da unser Prof damit jedoch unter anderem
> Kompaktheit einer Menge definiert hat, wäre es schon
> schön, wenn ich das kapieren würd.

Nun, zuerstmal sagt man zwar "offene Überdeckung", die Überdeckung selbst ist aber nicht offen, sondern die Mengen, die die Überdeckung bilden.

Eine System von Mengen [mm] $\{U_i\}_{i\in I}$ [/mm] (I eine Indexmenge) heißt Überdeckung einer Menge $M$, falls ihre Vereinigung $M$ enthält, falls also [mm] $\bigcup\limits_{i\in I} U_i [/mm] \ [mm] \supset [/mm] \ M$

Die Überdeckung heißt offen, falls die [mm] $U_i$ [/mm] offene Mengen sind.

Damit kann man "kompakt" definieren.

Eine Menge $M$ heißt kompakt, falls jede (!!) offene Überdeckung von $M$ eine endliche Teilüberdeckung hat.

$M$ ist also kompakt, wenn du aus jeder beliebigen offenen Überdeckung [mm] $\{U_i\}$ [/mm] von $M$ eine endliche Überdeckung [mm] $\{U_{i_k}\}=\{U_{i_1},U_{i_2},...,U_{i_k}\}$ [/mm] auswählen kannst: also [mm] $\bigcup\limits_{n=1}^{k}U_{i_n} [/mm] \ [mm] \supset [/mm] \ M$

Wichtig ist das unterstrichene "jede" !!

Ein triviales Bsp. für eine Überdeckung:

Nimm mal als Menge [mm] $M\subset\IR^2$ [/mm] das Quadrat mit Mittelpunkt $(0,0)$  und den Ecken $(1,1), (-1,1), (-1,-1), (1,-1)$

Das wird sicher trivialerweise von [mm] $\overline{B}_2(0)$, [/mm] also der abgeschlossenen Kugel (Kreisscheibe) um 0 mit Radius 2, überdeckt. Das wäre ein überdeckendes System aus nur einer Menge.

Ebenso tut es die offene Kugel (Kreisscheibe) [mm] $B_2(0)$. [/mm] Das wäre eine offene Überdeckung von $M$

>  
> LG fagottator


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]