matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrieoffene, innere Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - offene, innere Mengen
offene, innere Mengen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene, innere Mengen: unklare Angabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:44 Mo 16.04.2012
Autor: clemenum

Aufgabe
Man zeige:
a)  [mm] $A^{°} =X\setminus \overline{X\setminus A} [/mm]  $
b) [mm] $\overline{A°} [/mm] = [mm] X\setminus (X\setminus A)^{°} [/mm] $


Es wurde nicht dazu gesagt, was die angegebenen Mengen bedeuten sollen, ich fass es jedoch mal so auf:
[mm] $A^{°} [/mm] $ sehe ich als das innere von $A.$
$ [mm] \overline{X\setminus A} [/mm] $ sehe ich als sehe ich als den Abschluss von $X$ ohne $A$ an. Das rechte ergibt sich dann automatisch.

So, nun zum Beweis:
x [mm] \in \overline{A} \Leftrightarrow [/mm] (x [mm] \in A^{0} \vee x\in \partial [/mm] A ) [mm] \Leftrightarrow \exists [/mm] U [mm] \in \mathcal{U}(x): U\subseteq [/mm] A  [mm] \wedge \forall U\in \mathcal{U}(x) [/mm] : [mm] A\cap [/mm] U [mm] \neq \{ \} \Leftrightarrow \forall U\in \mathcal{U}(x) [/mm] : [mm] A\cap [/mm] U [mm] \neq \{ \} \Leftrightarrow \forall U\in [/mm]
[mm] \mathcal{U}(x) [/mm] : [mm] U\not \subseteq A^{C} \Leftrightarrow x\not \in (A^{C})^{°} \Leftrightarrow [/mm]
[mm] x\in X\setminus (A^{C})^{°} [/mm]
[mm] $\overline{A} [/mm] = [mm] X\setminus (A^{C}) [/mm] ^{°}  $
[mm] $A^{°} [/mm] = [mm] X\setminus \overline{A^{C}} [/mm] $

Ist meine Vorgangsweise korrekt?

        
Bezug
offene, innere Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 16.04.2012
Autor: Marcel

Hallo,

> Man zeige:
> a)  [mm]A^{°} =X\setminus \overline{X\setminus A} [/mm]

Du meinst linkerhand [mm] $A^\text{o}\,.$ [/mm] Bei Dir sieht man nur [mm] $A\,,$ [/mm] aber im Quelltext liest man [mm] [nomm]$A^{°}$[/nomm]. [/mm]

>  b)
> [mm]\overline{A°} = X\setminus (X\setminus A)^{°}[/mm]
>  
> Es wurde nicht dazu gesagt, was die angegebenen Mengen
> bedeuten sollen, ich fass es jedoch mal so auf:
> [mm]A^{°}[/mm]

[mm] $A^\text{o}$ [/mm]

> sehe ich als das innere von [mm]A.[/mm]

Ja, das ist der Kern (oder das Innere) von [mm] $A\,.$ [/mm]

>  [mm]\overline{X\setminus A}[/mm] sehe ich als sehe ich als den
> Abschluss von [mm]X[/mm] ohne [mm]A[/mm] an. Das rechte ergibt sich dann
> automatisch.
>
> So, nun zum Beweis:

Das ist der Beweis von was? Teil a)? Teil b)? Von beiden Teilen (und warum reicht dann ein Beweis - wegen de Morgan?)?

> x [mm]\in \overline{A} \Leftrightarrow[/mm] (x [mm]\in A^{0} \vee x\in \partial[/mm]
> A ) [mm]\Leftrightarrow \exists[/mm] U [mm]\in \mathcal{U}(x): U\subseteq[/mm]
> A  [mm]\wedge \forall U\in \mathcal{U}(x)[/mm] : [mm]A\cap[/mm] U [mm]\neq \{ \} \Leftrightarrow \forall U\in \mathcal{U}(x)[/mm]
> : [mm]A\cap[/mm] U [mm]\neq \{ \} \Leftrightarrow \forall U\in[/mm]
> [mm]\mathcal{U}(x)[/mm] : [mm]U\not \subseteq A^{C} \Leftrightarrow x\not \in (A^{C})^{°} \Leftrightarrow[/mm]
>  
> [mm]x\in X\setminus (A^{C})^{°}[/mm]
> [mm]\overline{A} = X\setminus (A^{C}) ^{°} [/mm]
>  [mm]A^{°} = X\setminus \overline{A^{C}}[/mm]
>
> Ist meine Vorgangsweise korrekt?  

Das ist schwer zu sagen, da Du gar nicht sagst, was (welchen Teil der AufgabeN) Du beweisen willst - aber davon abgesehen:
Zum einen musst Du sagen, wie ihr die Begriffe "offene Menge, abgeschlossene Menge, 'Kern einer Menge' und 'Abschluss einer Menge' und 'die Menge der offenen Umgebungen von [mm] $x\,$' [/mm] " definiert habt - zum anderen: Bei jedem [mm] $\gdw$ [/mm] hast Du ja zwei Richtungen zu zeigen - wenn Dir beide bei jedem gelingen und Du Dir im Klaren bist, was Du beweist (und das auch Deiner Umwelt mitteilst), dann eventuell ja.

Aber das, was nach dem letzten [mm] $\gdw$ [/mm] steht, ist mir nicht klar: Wie sind die drei Informationen da gemeint? (Also was sollen diese drei Aussagen bedeuten: Sind sie einander gleichwertig)?

Also mal ganz elementar, ohne jetzt auf das einzugehen, was Du gerechnet hast:
Wenn Du [mm] $A^\text{o}=X \setminus \overline{X \setminus A}$ [/mm] (Teil a)) zeigen sollst, dann hast Du zwei Teilmengenbeziehungen nachzuweisen:
1.) Zeige, dass [mm] $A^\text{o} \subseteq [/mm] X [mm] \setminus \overline{X \setminus A}$ [/mm]

2.) Zeigen, dass $X [mm] \setminus \overline{X \setminus A} \subseteq A^\text{o}\,.$ [/mm]

(Denn bekanntlich gilt für zwei Mengen [mm] $R=S\,$ [/mm] genau dann, wenn sowohl $R [mm] \subseteq [/mm] S$ als auch $S [mm] \subseteq [/mm] R$ gilt!)

Wie gesagt: Mir sind Eure Definitionen nicht bekannt. Zum Beispiel kann man bei obiger Behauptung a) auch ausnutzen, dass der Kern einer Menge die Vereinigung aller offenen Teilmengen dieser Menge ist...

P.S.
[mm] $X\,$ [/mm] ist hier natürlich die betrachtete Grundmenge!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]