matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive Mengenlehreoffene Mengen mit Rand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Naive Mengenlehre" - offene Mengen mit Rand
offene Mengen mit Rand < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene Mengen mit Rand: Verständnis
Status: (Frage) überfällig Status 
Datum: 13:41 Sa 14.06.2008
Autor: freshstyle

Aufgabe 1
Definition  Seien $ x [mm] \in \IR^n [/mm] $ , $ [mm] \parallel [/mm] x  [mm] \parallel [/mm]  = 1 $ , und $ a [mm] \in \IR [/mm] $ . Die Menge $ [mm] H_{x,a} [/mm]  =  {y [mm] \in \IR [/mm] | < x , y > [mm] \le [/mm] a} $ heißt geschlossener Halbraum, ihr Inneres $ [mm] H_{ x , a } [/mm]  =
  {y [mm] \in \IR [/mm] | < x , y >  < a} $ offener Halbraum.
Eine Teilmenge $ U [mm] \subset \IR^{n} [/mm] $ heißt offene Menge mit Rand, falls  $ U  [mm] \subset H_{ x , a } [/mm] $ und in $ [mm] H_{ x , a }^{\circ} [/mm] $ offen ist. Die
Menge $ [mm] \partial [/mm] U = U \ [mm] H_{ x , a }^{\circ} [/mm]  heißt der Rand von U . Man beachte, dass $ [mm] \partial [/mm] U $im allgemeinen nicht der
topologische Rand von $ U in [mm] \IR^{n} [/mm] ist!

Aufgabe 2
Bemerkung  Für alle $ x [mm] \in \IR^{n} [/mm]  , [mm] \paralle [/mm] x [mm] \parallel [/mm] = 1 $ , und $ a [mm] \in \IR [/mm] $ , gibt es eine Matrix $ A [mm] \in [/mm] SO(n) $
(d.h. $ [mm] A^{t} [/mm] A = 1 und det A = 1), so dass $ [mm] H_{x,a} [/mm] = [mm] A(]-\infinity [/mm] , 0] × [mm] \IR^{n-1} [/mm] + a · x $. Daher kann man
bis auf affine Bijektionen annehmen, dass U in $ [mm] H_{ e1 , 0 } [/mm]  = ] − [mm] \infty [/mm] , 0] × [mm] \IR^{n-1} [/mm] $ offen ist. Dann ist $ [mm] \partial [/mm] U =
U \  (0 × [mm] \IR^{n-1}) [/mm]  $ und kann als offene Teilmenge (ohne Rand) von $ [mm] \IR^{n-1} [/mm] $ aufgefasst werden.

Hallo,
ich verstehe leider die Bemerkung nicht so wirklich.
1.
    Wenn ich so eine offene Menge mit Rand habe, dann kann ich sagen das sie in $ [mm] H_{ e1 , 0 } [/mm] $ liegt , aber wieso erhalten bijektiv abbildungen die "offenheit" ?
2.
    Woher weiß ich das so ein bijektive ( längstreu ) Abbildung existiert?
3.
    Mit affiner Bijektion meint man A ist bijektiv plus dieses a*x?
4. Dann ist $ [mm] \partial [/mm] U =
U \  (0 × [mm] \IR^{n-1}) [/mm]  $ und kann als offene Teilmenge (ohne Rand) von $ [mm] \IR^{n-1} [/mm] $ aufgefasst werden. (Das verstehe ich  nocht nicht wirklich.

Danke für eure Hilfe
freshstyle
    


        
Bezug
offene Mengen mit Rand: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 16.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
offene Mengen mit Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:23 Do 19.06.2008
Autor: freshstyle

Hallo,
ich wollte noch mal den Thread hoch schieben.
Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]