matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenobere Dreiecksmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - obere Dreiecksmatrix
obere Dreiecksmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

obere Dreiecksmatrix: Induktion
Status: (Frage) überfällig Status 
Datum: 21:00 Mi 28.11.2007
Autor: pleaselook

Aufgabe
Sei $ [mm] X=\pmat{A&B\\0&D} [/mm] $ eine reelle, reguläre Matrix(nxn) und A,D quadratische Untermatritzen.

a) Bestimme Sie eine Formel für die Inverse von X.
b) Nutze (a) und voll. Induktion, um zu zeigen, dass die Inverse einer oberen rechten Dreiecksmatrix wieder eine obere rechte Dreiecksmatrix ist.  


Einen wunderschönen Abend erstmal an alle...

Ok. Erstmal hab ich mir ne Blockmatrix [mm] X=\pmat{A& B\\0& C} [/mm] genommen.
[mm] X^{-1}=\pmat{A^{-1}&- A^{-1}BC^{-1}\\0 &C^{-1}}. [/mm]
Gut ist X nun obere Dreiecksmatrix so ist [mm] A,C\in [/mm] R und B eine vollbesetze quadratische Matrix.
Die Inverse ist dann wie oben eine obere Dreiecksmatrix.

Hmm. Das ist mir soweit klar. Nur wie geh ich das mittels Induktion an?
Induktion über die Anzahl der Spalten=Zeilen?

IA: [mm] R_1=(1) \Rightarrow R_1^{-1}=(1) [/mm]
IV: R ist obere Dreiecksmatrix [mm] \Rightarrow (R_n)^{-1} [/mm] ist obere Dreiecksmatrix
IS: [mm] R_{n+1}=....nutze [/mm] ich hier aus das [mm] A,C\in [/mm] R und somit nach IV deren Inverse existieren und somit die obrige Formel angewandt werden kann?
---
Analog kann ich doch dann auch ne Aussage zu den unteren Dreiecksmatritzen machen?

        
Bezug
obere Dreiecksmatrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:58 Sa 01.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]