matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenobere \DeltaMatrix Eigenschaft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - obere \DeltaMatrix Eigenschaft
obere \DeltaMatrix Eigenschaft < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

obere \DeltaMatrix Eigenschaft: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 10:55 Mo 11.11.2013
Autor: dodo1924

Aufgabe
Sei die (nxn) Matrix A eine obere Dreiecksmatrix in der alle Diagonalelemente aii von 0 verschieden sind. Dann gelten folgende Eigenschaften, die zu beweisen sind:
(i) A ist invertierbar
(ii) A^-1 ist ebenfalls eine obere Dreiecksmatrix mit den Diagonalelementen a1,1^-1, a2,2^-1,...,an,n^-1.

Hallo!

Mein Ansatz zu (i) wäre, dass eine obere Dreiecksmatrix ja vollen Rang besitzt -->  A ist invertierbar!
Hier weiß ich jedoch nicht, wie ich beweisen kann, dass die obere Dreiecksmatrix vollen Rang besitzt?

Bei (ii) hätte ich diesen Ansatz: da ja die Einheitsmatrix unter anderem auch eine obere Dreiecksmatrix ist, und eine obere Dreiecksmatrix * eine obere Dreiecksmatrix wieder eine obere Dreiecksmatrix ergibt! Daraus folgere ich, dass A-1 eine obere Dreiecksmatrix ist!
Wie ich beweißen soll, dass die einzelnen Skalare von A^-1 die jeweils inversen Skalare zu denen von A sind, weiß ich leider nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
obere \DeltaMatrix Eigenschaft: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 11.11.2013
Autor: fred97


> Sei die (nxn) Matrix A eine obere Dreiecksmatrix in der
> alle Diagonalelemente aii von 0 verschieden sind. Dann
> gelten folgende Eigenschaften, die zu beweisen sind:
>  (i) A ist invertierbar
>  (ii) A^-1 ist ebenfalls eine obere Dreiecksmatrix mit den
> Diagonalelementen a1,1^-1, a2,2^-1,...,an,n^-1.
>  Hallo!
>  
> Mein Ansatz zu (i) wäre, dass eine obere Dreiecksmatrix ja
> vollen Rang besitzt

Im allgemeinen ist das nicht so ! Aber bei der obigen Matrix A ist das so, denn es sind doch alle [mm] a_{ii} \ne [/mm] 0.

>  -->  A ist invertierbar!
>  Hier weiß ich jedoch nicht, wie ich beweisen kann, dass
> die obere Dreiecksmatrix vollen Rang besitzt?

Wenn A eine obere Dreiecksmatrix ist mit  [mm] a_{ii} \ne [/mm] 0 (i=1,...,n) , so sind doch die Zeilen von A linear unabhängig.

Andere Begründung für die Invertierbarkeit von A:

Mach Dir klar, dass in einer oberen Dreiecksmatrix die Diagonalelemente gerade die Eigenwerte von A sind. A hat also gerade die [mm] a_{ii} [/mm] als Eigenwerte. 0 ist also kein Eigenwert von A.

>  
> Bei (ii) hätte ich diesen Ansatz: da ja die Einheitsmatrix
> unter anderem auch eine obere Dreiecksmatrix ist, und eine
> obere Dreiecksmatrix * eine obere Dreiecksmatrix wieder
> eine obere Dreiecksmatrix ergibt! Daraus folgere ich, dass
> A-1 eine obere Dreiecksmatrix ist!

Das ist O.K.


>  Wie ich beweißen soll

   beweisen ....

> , dass die einzelnen Skalare von
> A^-1 die jeweils inversen Skalare zu denen von A sind,
> weiß ich leider nicht.

Du sollst zeigen, dass die Diagonalelemente von [mm] A^{-1} [/mm] gerade die Zahlen  [mm] a_{ii}^{-1} [/mm] (i=1,...,n)  sind

Verwende wieder: die Diagonalelemente von [mm] A^{-1} [/mm] sind gerade die Eigenwerte von  [mm] A^{-1} [/mm]

und

  .... ist [mm] \lambda \ne [/mm] 0 ein Eigenwert von A , so ist [mm] \bruch{1}{\lambda} [/mm] ein Eigenwert von  [mm] A^{-1} [/mm]

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]