matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Numeriknummerisch Reihe, vergleichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - nummerisch Reihe, vergleichen
nummerisch Reihe, vergleichen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nummerisch Reihe, vergleichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Sa 10.10.2015
Autor: sissile

Aufgabe
Verifizieren Sie nummerisch, dass
[mm] \sum_{k=1}^\infty \frac{1}{k^2} =\pi^2/6 [/mm]
gilt, in dem Sie die ersten Partialsummen [mm] \sum_{k=1}^n \frac{1}{k^2} [/mm] für grosse n berechnen und mit [mm] \pi^2/6 [/mm] vergleichen.

Hallo,
Ich verstehe nicht was ich hier machen soll?
Soll ich in mathlab eine Funktion, die für einen eingegebenen Wert n die n-te Partialsumme berechnet? Dann würde aber stehen: Schreiben Sie ein Programm,dass die Partialsumme bis n der Reihe... berechnet.
Aber händisch irgendwas aufsummieren kann doch auch nicht Sinn der Sache sein?
Ich weiß nach dem Integral-Vergleichskriterium für Reihen konvergiert die Reihe.
[mm] \sum_{k=2}^N \frac{1}{k^2} \le \sum_{k=2}^N \frac{1}{k(k-1)}= \sum_{k=2}^N [/mm] ( - [mm] \frac{1}{k} [/mm] + [mm] \frac{1}{k-1})= [/mm] -1/2 + [mm] \frac{1}{N-1} [/mm]

[mm] |S_N(x) [/mm] - [mm] \pi/6|= [/mm] |1-1/2 + [mm] \frac{1}{N-1}- \pi^2/6|=|1/2 [/mm] + [mm] \frac{1}{N-1}- \pi^2/6| [/mm]

Habt ihr einen Plan was ich genau machen soll?

        
Bezug
nummerisch Reihe, vergleichen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 So 11.10.2015
Autor: Chris84


> Verifizieren Sie nummerisch, dass
>  [mm]\sum_{k=1}^\infty \frac{1}{k^2} =\pi^2/6[/mm]
>  gilt, in dem Sie
> die ersten Partialsummen [mm]\sum_{k=1}^n \frac{1}{k^2}[/mm] für
> grosse n berechnen und mit [mm]\pi^2/6[/mm] vergleichen.
>  Hallo,

Hallo :)

>  Ich verstehe nicht was ich hier machen soll?
>  Soll ich in mathlab eine Funktion, die für einen
> eingegebenen Wert n die n-te Partialsumme berechnet? Dann
> würde aber stehen: Schreiben Sie ein Programm,dass die
> Partialsumme bis n der Reihe... berechnet.

Ich wuerde auf sowas tippen!

>  Aber händisch irgendwas aufsummieren kann doch auch nicht
> Sinn der Sache sein?

Hmm... was ist der Kontext der Aufgabe? (Welche Vorlesung? Welches Gebiet?)

>  Ich weiß nach dem Integral-Vergleichskriterium für
> Reihen konvergiert die Reihe.
>  [mm]\sum_{k=2}^N \frac{1}{k^2} \le \sum_{k=2}^N \frac{1}{k(k-1)}= \sum_{k=2}^N[/mm]
> ( - [mm]\frac{1}{k}[/mm] + [mm]\frac{1}{k-1})=[/mm] -1/2 + [mm]\frac{1}{N-1}[/mm]
>  
> [mm]|S_N(x)[/mm] - [mm]\pi/6|=[/mm] |1-1/2 + [mm]\frac{1}{N-1}- \pi^2/6|=|1/2[/mm] +
> [mm]\frac{1}{N-1}- \pi^2/6|[/mm]
>  
> Habt ihr einen Plan was ich genau machen soll?

Ich kann es auch nicht genau sagen, aber so wie ich (!) die Aufgabe verstehe, ist wirklich gemeint, die Partialsummen (numerisch) zu berechnen und mit [mm] $\pi^2/6$ [/mm] zu vergleichen. Ansonsten wuerde ich eher eine Formulierung der Art "Beweisen Sie, dass..." erwarten.

Vielleicht sehen aber andere Menschen das anders? :)

Gruss,
Chris


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]