matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisnullstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - nullstellen
nullstellen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:24 So 20.02.2005
Autor: Anna17

also ich habe diese funktion:
f(x)= [mm] x^{3}-4,9x^{2}-0,56x+15,744 [/mm]

ich weiß zwar,dass ich die nullstellen mit hilfe der polynomdivision berechnen kann, weiß aber leider nicht mehr wie das ging... bitte helft mir..


        
Bezug
nullstellen: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:55 So 20.02.2005
Autor: MathePower

Hallo,

zunächst musst Du eine Nullstelle raten. Sei es durch probieren oder irgendein Näherungsverfahren wie Regula Falsi, Newton, Intervallhalbierung.

Um nun die weiteren Nullstellen zu finden, wird das Polynom durch [mm]x-x_{0}[/mm] geteilt. Dadurch wird der Grad des Polynoms um 1 erniedrigt. Hier ist [mm]x_{0}[/mm] die gefundene Nullstelle.

Im vorliegenden Fall bedeutet das dann, daß die Nullstellen von dem so erhaltenen Polynom 2. Grades ermitteln muß.  Was aber kein großes Problem darstellt.

Gruß
MathePower


Bezug
        
Bezug
nullstellen: tipp
Status: (Antwort) fertig Status 
Datum: 18:57 So 20.02.2005
Autor: hobbymathematiker

Hallo Anni

Du hast schon recht die Aufgabe sieht ätzend aus.

Aber sie ist lösbar.

[mm](x-2)(x-1)(x+1)=x^3 - 2\cdot{}x^2 - x + 2[/mm]


Versuch doch mal mit obiger aufgabe zu üben.
Sie ist überschaubar und du kennst die Lösung.

Dann löst du deine Aufgabe leicht nach dem gleichen Prinzip. ;-)

Das schwierigste ist die erste Nullstelle zu finden.

Wie solltet ihr das machen?

Gruss
Eberhard



Bezug
        
Bezug
nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 20.02.2005
Autor: Anna17

ich hab das jetzt versucht nocheimal auszurechnen... ist [mm] x^2-2,5x+ [/mm] 6,56 richtig?

Bezug
                
Bezug
nullstellen: Nicht ganz richtig
Status: (Antwort) fertig Status 
Datum: 20:14 So 20.02.2005
Autor: MathePower

Hallo,

das Restpolynom sieht so aus

[mm]x^{2} \; - \;2,5x\; - \;6,56[/mm]

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]