matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionennullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - nullstellen
nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 26.10.2007
Autor: Sternchen0707

eigentlich eine ganz einfache frage... Aber leider nicht für mich :(

Woran erkennen ich wie viele Nullstellen eine Funktion hat?
Also mir ist schon klar, dass eine Funktion 2. Gerades maximal 2 nullstellen hat und eine Funktion 3. Grades maximal 3 und so auch bein 4. Grad.

Wenn ich aber nun die funktion f(x)=x²+3 habe,... woran erkenne ich das diese Funktion keine nullstellen hat. Also klar ich könnte das ausrechnen aber wie erkennt man das sofort??

Danke für jede hilfreiche Antwort ;)

        
Bezug
nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Fr 26.10.2007
Autor: Sternchen0707

Ok. das beispiel war schlecht... weil man keine Wurzel aus -3 ziehen kann. Aber was ist mit f(x)=x²-6x+9 ???
Diese funktion hat nur eine Nullstelle, woran erkenn ich das?

Bezug
                
Bezug
nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Fr 26.10.2007
Autor: Lord_Exo

in dem du die pq Formel anwendes und das ganze dann offensichtlich wird.

x1,2= -(p/2) [mm] +-\wurzel{(p/2)^{2}-q} [/mm]

für deine Gleichung ist die Lösung = 3. probiers aus

Bezug
        
Bezug
nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 26.10.2007
Autor: leduart

Hallo
bei quadratischen fkt. kann man das noch ziemlich leicht erkennen:
wenn man f(x) als [mm] f(x)=(x-a)^2+b [/mm] hat, ist [mm] (x-a)^2 [/mm] immer größer oder gleich 0, es hat also nur Nullstellen, wenn b 0 ist, dann eine und wenn b<0 ist zwei.
bei den anderen Funktionen geht das nicht so leicht, es sei denn man kann sie in ein Produkt zerlegen.
bei fkt. ungeraden Grades weiss man, dass sie mindestens Eine Nullstelle haben, denn für sehr große x ist imme der Teil mit [mm] x^3 [/mm] oder [mm] x^5 [/mm] usw, der größte, der ist für positive x positiv, für negative negativ, also weiss man dass die fkt irgendwo negativ und irgendwo pos. ist, also hat sie sicher eine Nulstelle, aber mehr weiss man nicht!
und man kann auch wenn die fkt nicht ne besondere Form wie etwa
[mm] f(x)=(x-a)*((x-b)^2+c) [/mm] hat oder man sie so umformen kann   nix genaueres nicht sagen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]