matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - nullstellen
nullstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Di 21.02.2006
Autor: engel

wie kann ich eine gleichung der allg. form in die nullstellenform bringen? Bei mir im Buch steht da "a übernehmen, Nullstellen berechnen" und das hilft mir nicht so wirklich weiter...

        
Bezug
nullstellen: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Di 21.02.2006
Autor: Seppel

Hi!

Was für eine Funktion meinst du? Eine lineare Funktion, eine quadratische oder die allgemeine Schreibweise einer ganzrationalen Funktion? Wäre nett, wenn du das angeben würdest.

Liebe Grüße
Seppel

Bezug
                
Bezug
nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Di 21.02.2006
Autor: engel

als allgemeine form meine ich:

y= ax² + bx + c

Bezug
        
Bezug
nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 21.02.2006
Autor: sandmann0187

hey,

kurze frage, willst du aus der gleichgung 0= ax² + bx + c folgende machen: x² +px+q=0 ???

also wenn du die formel y= ax² + bx + c hast, kannst du gleich eine lösungsformel anwenden, die in jedem tafelwerk steht.

die lautet     [mm] x_{1/2}=\bruch{-b \pm \wurzel{b²-4ac}}{2a} [/mm]

möchtest du aber das ganze auf die form x² +px+q=0 bringen, rechnest du einfach jeden summanden durch a, dann hast du also   [mm] \bruch{a}{a}x²+\bruch{b}{a}x+\bruch{c}{a}=\bruch{0}{a}=0 [/mm]

sag mal, was du nun genau machen willst. gib uns mal ein beispiel

gruß andreas

Bezug
                
Bezug
nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 21.02.2006
Autor: engel

ich möchte aus:

y = ax² + bx + c

y = a(x-x1) (x-x2)

machen

Bezug
                        
Bezug
nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 21.02.2006
Autor: Astrid

Hallo engel,

> ich möchte aus:
>  
> y = ax² + bx + c
>  
> y = a(x-x1) (x-x2)

[mm] x_1 [/mm] und [mm] x_2 [/mm] sind die Nullstellen der Gleichung [mm] $y=ax^2+bx+c$. [/mm]

Genauer: du mußt also nur mit der p/q-Formel Nullstellen berechnen, wobei [mm] $p=\bruch{b}{a}$ [/mm] und [mm] $q=\bruch{c}{a}$. [/mm]

Wenn es keine gibt, dann gibt es die zweite Form nicht, wenn es eine [mm] (x_1) [/mm] gibt, dann gilt:

[mm] $y=a(x-x_1)^2$ [/mm]

und wenn es zwei verschiedene [mm] (x_1 [/mm] und [mm] x_2) [/mm] gibt, dann gilt:

[mm] $y=a(x-x_1)(x-x_2)$ [/mm]

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]