matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungnormierter Vektor
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - normierter Vektor
normierter Vektor < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normierter Vektor: Komponenten
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 23.04.2005
Autor: Mariocut

ich soll alle x größer 0 berechnen, so daß sie Komponenten eines norm. Vektors sind.Ich denke, daß ich den angegebenen Vektor normiere und errechne 5.Bin ich da richtig?

[mm] \vektor{x\\a}=LK{3\\4} [/mm]

Ich habe diese Frage noch nirgendwo in einem anderen Forum gestellt.
MfG zum Samstag Abend!  Mariocut

        
Bezug
normierter Vektor: Rückfrage
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 23.04.2005
Autor: Max

Hallo Mario,

suchst du alle Vektoren mit [mm] $\left|\vektor{x\\a}\right| [/mm] = [mm] \left| \vektor{3\\4}\right| [/mm] =5$?

Dass Problem führt ja nur auf eine quadratische Gleichung in $x$ in Abhängigkeit von $a$.

Gruß Max

Bezug
        
Bezug
normierter Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Sa 23.04.2005
Autor: Mariocut

Ich komme nicht so richtig mit dem Schreibprogramm klar...Also der Vektor mit dem  x als Komponente soll eine Linearkombination [mm] von\vektor{3\\4} [/mm] sein, so ist das gemeint

Bezug
                
Bezug
normierter Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Sa 23.04.2005
Autor: Paulus

Hallo maricut

wenn das so ist, dann heisst das doch, dass der Vektor

[mm] $\vektor{x \\ a}$ [/mm] die Form [mm] $\vektor{3t \\ 4t}$ [/mm] hat.

Die erste Komponente muss also 3/4 der 2. Komponente sein.

Dies führt zu der Gleichung

[mm] $x=\bruch{3}{4}a$ [/mm]

Im Weiteren soll der Vektor normiert sein. Nach meinem Verständnis heisst das, dass der Vektor die Länge 1 haben muss.

Also:

[mm] $a^2+x^2=1$ [/mm]

Jetzt hast du zwei Gleichungen, die du sogar eindeutig nach x und a auflösen kannst! Eindeutig nach x, weil ja sogar x nach Aufgabenstellung > 0 sein muss.

Kannst du so weitermachen?

Mit lieben Grüssen

Paul

Bezug
                        
Bezug
normierter Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:45 So 24.04.2005
Autor: Mariocut

Danke!Ich denke das ist so ok. Bis zum nächsten mal...   Mario

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]