matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und Matrizennormen, abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abbildungen und Matrizen" - normen, abbildungen
normen, abbildungen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normen, abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Mi 13.05.2009
Autor: ulucay

Aufgabe
man zeige, dass [mm] \delta: B(\IR^n)\to \IR [/mm] definiert durch [mm] \delta [/mm] f= f(0) zu [mm] L(B(\IR^n),\IR) [/mm] gehört, und man bestimme [mm] ||\delta||. [/mm]
[mm] B(\IR):= [/mm] f: [mm] \IR^n \to \IR, sup_{x\in \IR^n} [/mm] |f(x)|< [mm] \infty [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe überhaupt keine idee wie ich die aufgabe lösen soll. kann mir da jemand vlt. helfen??

        
Bezug
normen, abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 13.05.2009
Autor: fred97


> man zeige, dass [mm]\delta: B(\IR^n)\to \IR[/mm] definiert durch
> [mm]\delta[/mm] f= f(0) zu [mm]L(B(\IR^n),\IR)[/mm] gehört, und man bestimme
> [mm]||\delta||.[/mm]
>  [mm]B(\IR):=[/mm] f: [mm]\IR^n \to \IR, sup_{x\in \IR^n}[/mm] |f(x)|<
> [mm]\infty[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich habe überhaupt keine idee wie ich die aufgabe lösen
> soll. kann mir da jemand vlt. helfen??



Ich nehme an, dass [mm] B(\IR^n) [/mm] mit der Norm ||f|| = sup{ |f(x)|: x [mm] \in \IR^n [/mm] } versehen ist.

Du sollst zeigen: [mm] \delta [/mm] ist eine stetige Linearform und Du sollst  [mm] $||\delta||$ [/mm] bestimmen

Die Linearität von [mm] \delta [/mm] dürfte klar sein.

Weiter:

$| [mm] \delta(f)| [/mm] = |f(0)| [mm] \le [/mm] ||f||$

Somit ist [mm] \delta [/mm] stetig und ||f|| [mm] \le [/mm] 1. Mit de konstanten Funktion f = 1 siehst Du dann: ||f|| =1


Edit:
Somit ist $ [mm] \delta [/mm] $ stetig und $ [mm] ||\delta|| \le [/mm] 1 $. Mit der konstanten Funktion f = 1 siehst Du dann: $ [mm] ||\delta|| [/mm] =1 $


FRED

Bezug
                
Bezug
normen, abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 13.05.2009
Autor: ulucay

Aufgabe
man zeige, dass $ [mm] \delta: B(\IR^n)\to \IR [/mm] $ definiert durch
> $ [mm] \delta [/mm] $ f= f(0) zu $ [mm] L(B(\IR^n),\IR) [/mm] $ gehört, und man bestimme
> $ [mm] ||\delta||. [/mm] $
>  $ [mm] B(\IR):= [/mm] $ f: $ [mm] \IR^n \to \IR, sup_{x\in \IR^n} [/mm] $ |f(x)|<
> $ [mm] \infty [/mm] $  


danke dir fred!

aber wie kommst du darauf,dass f<1 ist und ist eigentlich [mm] \delta [/mm] f =f(0)=0 wegen der linearität??

Bezug
                        
Bezug
normen, abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:12 Do 14.05.2009
Autor: fred97


> man zeige, dass [mm]\delta: B(\IR^n)\to \IR[/mm] definiert durch
>  > [mm]\delta[/mm] f= f(0) zu [mm]L(B(\IR^n),\IR)[/mm] gehört, und man

> bestimme
>  > [mm]||\delta||.[/mm]

>  >  [mm]B(\IR):=[/mm] f: [mm]\IR^n \to \IR, sup_{x\in \IR^n}[/mm] |f(x)|<
>  > [mm]\infty[/mm]

> danke dir fred!
>  
> aber wie kommst du darauf,dass f<1 ist

??????????????    Das hab ich nirgendwo geschrieben !!

> und ist eigentlich
> [mm]\delta[/mm] f =f(0)=0 wegen der linearität??  

Wie kommst Du auf so was ??


FRED



Bezug
                
Bezug
normen, abbildungen: abbildung
Status: (Frage) beantwortet Status 
Datum: 20:06 Do 14.05.2009
Autor: ulucay

Aufgabe
man zeige, dass $ [mm] \delta: B(\IR^n)\to \IR [/mm] $ definiert durch
> $ [mm] \delta [/mm] $ f= f(0) zu $ [mm] L(B(\IR^n),\IR) [/mm] $ gehört, und man bestimme
> $ [mm] ||\delta||. [/mm] $
>  $ [mm] B(\IR):= [/mm] $ f: $ [mm] \IR^n \to \IR, sup_{x\in \IR^n} [/mm] $ |f(x)|<
> $ [mm] \infty [/mm] $  


sorry fred!
du hattest geschrieben dass ||f||<1 oder =1 ist und f=1. das versteh ich nicht so ganz

Bezug
                        
Bezug
normen, abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 Fr 15.05.2009
Autor: fred97

Ich muß mich bei Dir entschuldigen, denn ich hatte mich vertippt !

Geschrieben hatte ich:

"Somit ist $ [mm] \delta [/mm] $ stetig und $ ||f|| [mm] \le [/mm] 1 $. Mit der konstanten Funktion f = 1 siehst Du dann: $ ||f|| =1 $ "


Richtig ist jedoch:

Somit ist $ [mm] \delta [/mm] $ stetig und $ [mm] ||\delta|| \le [/mm] 1 $. Mit der konstanten Funktion f = 1 siehst Du dann: $ [mm] ||\delta|| [/mm] =1 $


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]