matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorienormalverteilte Zufallsgröße
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - normalverteilte Zufallsgröße
normalverteilte Zufallsgröße < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalverteilte Zufallsgröße: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:14 Mi 12.11.2008
Autor: Exlua

Aufgabe
Bei der Positionsbestimmung mittels GPS wird der Fehler als Differenz zwischen der tatsächlichen und der mit dem GPS-Gerät ermittelten Position in Nord-Süd-Richtung betrachtet. Es wird angenommen, dass dieser Fehler eine normalverteilte Zufallsgröße X mit dem Mittelwert μ = 0 m und der Standardabweichung  = 5 m ist.

(a) Berechnen Sie die Wahrscheinlichkeit dafür, dass der Fehler zwischen −7 m und +9 m liegt!  Lösung: 0.8833

(b) Welchen Wert müsste die Standardabweichung  annehmen, damit die Wahrscheinlichkeit für Fehler größer +5 m gleich 1 % ist? Lösung: s= 2.1496

(c) Bei 20 Positionsbestimmungen eines festen Referenzobjektes wurde ein Stichprobenmittel von [mm] \overline{x} [/mm] = 1.05 m und eine empirische Standardabweichung von s = 6.3 m ermittelt. Berechnen Sie ein zweiseitiges Konfidenzintervall für den Mittelwert μ zum Konfidenzniveau 95 %. Lsöung:  (−1.8985, 3.9985)

zu a)

μ=0m    s=5m

[mm] P(-7m\le [/mm] X [mm] \le+9m)=F(9m)-(1-F(7m))=\emptyset(\bruch{9m-5m}{0m})-(1-\emptyset(\bruch{7m-5m}{0m})) [/mm]
[mm] =\emptyset(\infty)-(1-\emptyset(\infty))=1-(1-1)=1 [/mm]

[mm] \mu=0m [/mm] nervt !

zu b)

[mm] P(X>5m)=1-F(5m)=1-\emptyset(\bruch{5m-s}{0m})=0.01 [/mm]

?

zu c)

n=20   [mm] \overline{x}=1.05 [/mm] m  s=6,3m
95% [mm] \Rightarrow \alpha=0,05 \Rightarrow [/mm] c=1,96

[mm] k=\bruch{c*s}{\wurzel{n}}=2,76m [/mm]

[mm] (\overline{x}-k;\overline{x}+k)=(-1,71m;3,81m) [/mm]

Was habe ich falsch gerechnet ?

        
Bezug
normalverteilte Zufallsgröße: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Fr 14.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]