matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpernormalteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - normalteiler
normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalteiler: tipp
Status: (Frage) beantwortet Status 
Datum: 19:36 Mi 18.11.2009
Autor: grafzahl123

Aufgabe
sei G eine gruppe, N normalteiler von G und U [mm] \le [/mm] G sowie [mm] (U_i [/mm] : i [mm] \in [/mm] I) eine familie von Untergruppen von G. zeige:
N [mm] \cap [/mm] U ist ein Normalteiler von U

ich hab irgendwie garkeine idee wie man hier vorgehen soll. hat vielleicht irgenwer nen tipp wie man hier anfangen könnte.

N ist normalteiler, das heißt doch, dass es eine spezielle untergruppe ist mit gN=Ng und gNg^-1=N. wenn ich das jetzt mit U, also einer untergruppe, schneide erhalte ich doch eigentlich die triviale Untergruppe, die nur das neutrale element enthält!? und die wäre ja auf jeden fall normalteiler von G. ich hab einfach mal meine gedanken aufgeschrieben, vielleicht ist ja was sinnvolles dabei :-)

würde mich über hilfe freuen.

ich habe diese frage i n kienem anderen forum gestellt.

        
Bezug
normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 18.11.2009
Autor: felixf

Hallo!

> sei G eine gruppe, N normalteiler von G und U [mm]\le[/mm] G sowie
> [mm](U_i[/mm] : i [mm]\in[/mm] I) eine familie von Untergruppen von G.
> zeige:
>  N [mm]\cap[/mm] U ist ein Normalteiler von U
>
>  ich hab irgendwie garkeine idee wie man hier vorgehen
> soll. hat vielleicht irgenwer nen tipp wie man hier
> anfangen könnte.

Na: die Eigenschaften fuer Untergruppe und Normalteiler nachrechnen.

Die Untergruppeneigenschaften musst du selber rechnen.

Fuer die Normalteilereigenschaft nimm dir ein $g [mm] \in [/mm] U$. Du musst nun $g (N [mm] \cap [/mm] U) [mm] \subseteq [/mm] (N [mm] \cap [/mm] U) g$ und $(N [mm] \cap [/mm] U) g [mm] \subseteq [/mm] (N [mm] \cap [/mm] U) g$ zeigen.

Zu $g (N [mm] \cap [/mm] U) [mm] \subseteq [/mm] (N [mm] \cap [/mm] U) g$ nimmst du dir ein $n [mm] \in [/mm] N [mm] \cap [/mm] U$. Da $N$ ein Normalteiler ist, gilt $g n [mm] \in [/mm] N g$. Du musst also noch $g n [mm] \in [/mm] U g$ zeigen, dann folgt $g n [mm] \in [/mm] (N [mm] \cap [/mm] U) g$.

Dann leg mal los...

> N ist normalteiler, das heißt doch, dass es eine spezielle
> untergruppe ist mit gN=Ng und gNg^-1=N.

Das gilt fuer alle $g [mm] \in [/mm] G$, damit es Normalteiler in $G$ ist.

> wenn ich das jetzt
> mit U, also einer untergruppe, schneide erhalte ich doch
> eigentlich die triviale Untergruppe, die nur das neutrale
> element enthält!?

Warum solltest du? Ist etwa $N = U$ nicht die triviale Untergruppe, so ist $N [mm] \cap [/mm] U = N = U$ ebenfalls nicht die triviale Untergruppe.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]