matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorennormalenvektor?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - normalenvektor?
normalenvektor? < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalenvektor?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Mi 14.03.2007
Autor: Gabel

Guten Abend...
Habe nur eine kleine Frage, kann mit jemand den Unterschied zwischen dem Normalenvektor einer Gerade/Ebene und dem NormalenEINHEITSvektor einer Gerade/ Ebene erklären?

wäre echt hilfreich, danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
normalenvektor?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 14.03.2007
Autor: Steffi21

Hallo,

Ein Normalenvektor einer Ebene ist ein Vektor, der senkrecht (orthogonal) auf dieser Ebene steht. Er schließt also mit den die Ebene aufspannenden Vektoren jeweils einen rechten Winkel ein. Ein Normalenvektor ist zwangsläufig verschieden vom Nullvektor.


Ein Normaleneinheitsvektor ist ein Normalenvektor der Länge 1 (normiert). Im dreidimensionalen Vektorraum hat jede Ebene genau zwei Normaleneinheitsvektoren.

Steffi


Bezug
                
Bezug
normalenvektor?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 14.03.2007
Autor: Gabel

sagen die formeln [mm] d=|(\vec{p}-\vec{a}) *\vec{n0} [/mm]

und [mm] \vec{n}/\vec{n}*(\vec{p}-\vec{a}) [/mm]
ein und das selbe aus?

ich möchte damit den Abstand von einem Punkt P zu einer Ebene berechnen, wobei a der Aufhängepunkt der Ebene ist.
Danke übrigens für die schnelle Antwort!

Bezug
                        
Bezug
normalenvektor?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 14.03.2007
Autor: leduart

Hallo
> sagen die formeln [mm]d=|(\vec{p}-\vec{a}) *\vec{n0}[/mm]
>  
> und [mm]\vec{n}/\vec{n}*(\vec{p}-\vec{a})[/mm]
>   ein und das selbe aus?

Nein, oben steht ein Skalarprodukt, also ne reelle Zahl, unten steht ein Vektor dividiert durch ein skalarprodukt, also wieder ein Vektor., also sicher kein Abstand.  

> ich möchte damit den Abstand von einem Punkt P zu einer
> Ebene berechnen, wobei a der Aufhängepunkt der Ebene ist.

Die erste Formel ist richtig fuer den Abstand, wenn [mm] \vec{n0} [/mm] der Einheitsnormalenvektor der Ebene ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]