matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungnormalenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - normalenform
normalenform < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalenform: bestimmung?
Status: (Frage) beantwortet Status 
Datum: 19:15 Di 21.11.2006
Autor: slice

ich bins schonwieder, hab ganz vergessen dass ich 2 fragen hab.. hätt die natürlich genauso in 1 thema stellen könne.. naja vergessen halt..

die aufgabe ist eine normalenfrom und eine koordinatengleichung von E anzugeben

E: [mm] \vec{x} [/mm] = [mm] \vektor{2 \\ 1 \\ 2}] [/mm] + r* [mm] \vektor{1 \\ 3 \\ 0} [/mm] + s* [mm] \vektor{-2 \\ 1 \\ 3} [/mm]

hab dann über  [mm] \vektor{1 \\ 3 \\ 0}* \vec{n}= [/mm] 0  und [mm] \vektor{-2 \\ 1 \\ 3} [/mm] * [mm] \vec{n} [/mm] = 0

den normalenvekor bestimmt. also habe die matrix eingegeben, dann n3=1 bestimmt so dass ich n3=1 n2=-3/7 und n1= 9/7 also normalenvektor erhalten habe...
wo setze ich das denn dann wie ein? ich habe noch einzustzclihes buch zum lernen, da wurde einfach da aufgehört. also eifnach der normalenvektor angegeben und feritg. aber das ist ja noch nicht die normalenform oder doch schon?





        
Bezug
normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Mi 22.11.2006
Autor: hase-hh

moin,

die normalenform einer ebene lautet:

[mm] (\vec{x} [/mm] - [mm] \vec{p})*\vec{n}=0 [/mm]

[mm] \vec{n} [/mm] hast du ja schon ermittelt, [mm] \vec{p} [/mm] = ( 2 / 1 / 2) ... und fertig.


koordinatenform

eine möglichkeit, die ebene in die koordinatenform umzuwandeln, ist:

das skalarprodukt auszumultiplizieren

[mm] (\vec{x} [/mm] - [mm] \vec{p})*\vec{n} [/mm]

( [mm] \vektor{x \\ y \\ z} [/mm] - [mm] \vektor{2 \\ 1 \\ 2} )*\vektor{1 \\ -\bruch{3}{7} \\ \bruch{9}{7}} [/mm]

= (x-2)*1 + (y-1)*(- [mm] \bruch{3}{7} [/mm] ) + (z-2)* [mm] \bruch{9}{7} [/mm]

= x-2 - [mm] \bruch{3}{7}y [/mm] + [mm] \bruch{3}{7} [/mm] + [mm] \bruch{9}{7}z [/mm] - [mm] \bruch{18}{7} [/mm]

= x - [mm] \bruch{3}{7}y [/mm] + [mm] \bruch{9}{7}z [/mm] - [mm] \bruch{29}{7} [/mm]


gruß
wolfgang




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]