matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpernormal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - normal
normal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normal: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:54 Sa 09.01.2010
Autor: StefanK.

Aufgabe
Sei K ein Körper der Charakteristik p>0 und sei L = K[x] [mm] \supset [/mm] K eine Erweiterung, die von einem rein inseparablen Element x [mm] \in [/mm] L erzeugt wird, das heißt [mm] (x^p)^e \in [/mm] K für ein e [mm] \in [/mm] N. Zeigen Sie, dass L [mm] \supset [/mm] K normal ist.  

Hallo,
Damit eine Erweiterung normal ist, muss sie ja zum Einen algebraisch sein, zum Anderen zerfällt ein irredduzibles Polynom f [mm] \in [/mm] K[X], wenn es eine Nullstelle in L besitzt, über L in Linearfaktoren (so lautet zumindest unsere Definition).

Wenn ich mir jetzt meine Körpererweiterung anschaue, so wird doch lediglich ein Element adjungiert, oder? - was bedeutet denn "rein" separable in diesem Zusammenhang?
Kann ich iwie damit argumentieren, dass [mm] (x^p)^e [/mm] über L immer algebraisch in K bleibt? (ich weiß zwar nicht wieso, aber es wird ja wahrscheinlich so sein).
Wie ihr seht, komme ich bei dieser Aufgabe nicht wirklich weiter. Ich würde mich sehr über etwas Hilfe freuen!

Viele Grüße
Stefan

        
Bezug
normal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 11.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]