matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und Approximationnochmal Maschinenepsilon
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Interpolation und Approximation" - nochmal Maschinenepsilon
nochmal Maschinenepsilon < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nochmal Maschinenepsilon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 So 20.05.2007
Autor: sancho1980

Hallo,

ich habe noch eine weitere Frage zum Maschinenepsilon; weiss vielleicht nochmal einer weiter:

Die maschinell gerundete Zahl rd(z) ist ja gegeben mit:

rd(z) = z(1 + r),

wobei fuer r gilt

-1/2 * B^(1 - t) < r < +1/2 * B^(1 - t),

und wobei B die Basis und t die Anzahl der Mantissenstellen ist.

Setzen wir Basis B = 10 und t = 3.

(1)

Im ersten Fall sei unser z = 1. Die zugehoerige Mantisse saehe folgendermassen aus:

.100 (* [mm] 10^1) [/mm]

Fuer r ergibt sich dann:

-1/2 * 10^(1-3) < r < 1/2 * 10^(1-3)
also
-.005 (* [mm] 10^0) [/mm] < zr < .005 (* [mm] 10^0) [/mm]

Damit ist rd(z) = z(1 + r):

.100 (* [mm] 10^1) [/mm] = z(1 + r) = z + zr

also

.0095 (* [mm] 10^1) [/mm] <= z < .1005 (* [mm] 10^1) [/mm]

Damit bin ich einverstanden, denn die Zahlen im halboffenen Intervall [.0095 (* [mm] 10^1), [/mm] .1005 (* [mm] 10^1)[ [/mm] muessen dargestellt werden mit .100 (* [mm] 10^1). [/mm]


(2)

Im zweiten Fall sei unser z = 2. Die zugehoerige Mantisse saehe folgendermassen aus:

.200 (* [mm] 10^1) [/mm]

Fuer r ergibt sich wieder:

-1/2 * 10^(1-3) < r < 1/2 * 10^(1-3)
also diesmal
-.010 (* [mm] 10^0) [/mm] < zr < .010 (* [mm] 10^0) [/mm]

Damit ist rd(z) = z(1 + r):

.200 (* [mm] 10^1) [/mm] = z(1 + r) = z + zr

also

.199 (* [mm] 10^1) [/mm] <= z < .201... (* [mm] 10^1) [/mm]

Das hiesse ja dann, alle Zahlen z im Intervall [.199 (* [mm] 10^1), [/mm] .201 (* [mm] 10^1)[ [/mm] wuerden dargestellt mit .200 (* 101). Tatsaechlich gilt es aber auch hier nur fuer die Zahlen im Intervall [.1995 (* [mm] 10^1), [/mm] .2015 (* [mm] 10^1)[. [/mm] Versteht ihr was ich meine?

Gruss und danke

Martin

        
Bezug
nochmal Maschinenepsilon: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mo 21.05.2007
Autor: mathemaduenn

Hallo sancho,
Das r ist immer das gleiche. Dies ist des Rätsels Lösung.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]