matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizennilpotente Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - nilpotente Matrizen
nilpotente Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nilpotente Matrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 19.05.2009
Autor: math101

Aufgabe
Sei p>0 eine Primzahl. Beweisen Sie, dass es genau [mm] p^2 [/mm] nilpotente Matrizen [mm] \in Mat(2,\IF_p). [/mm] (man darf die Tatsache benutzen, dass in [mm] \IF_{p}^{x}, p\not=2 [/mm] genau die Hälfte der Elemente Quadrate sind).

Hallo, ZUSAMMEN!!
Ich bräuchte dringend Hilfe bei der Aufgabe!!!
Habe überhaupt keine Ahnung, wie ich heran gehen soll!
Ich weiß, dass Tr(A)=0 und det(A)=0, weil A nilpotent ist. Ich hab das bei p=3 und p=5 untersucht, das funktioniert, aber das bringt mich nicht weiter!!!
Wäre sehr froh, wenn mir jemand antworten würde!!
Danke!!
Gruß

        
Bezug
nilpotente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:50 Mi 20.05.2009
Autor: felixf

Hallo!

> Sei p>0 eine Primzahl. Beweisen Sie, dass es genau [mm]p^2[/mm]
> nilpotente Matrizen [mm]\in Mat(2,\IF_p).[/mm] (man darf die
> Tatsache benutzen, dass in [mm]\IF_{p}^{x}, p\not=2[/mm] genau die
> Hälfte der Elemente Quadrate sind).

Ehrlich gesagt: den Tipp braucht man nicht. Man kann das vermutlich auch anders loesen und dabei den Tipp gebrauchen, es geht aber auch ohne.

>  Hallo, ZUSAMMEN!!
>  Ich bräuchte dringend Hilfe bei der Aufgabe!!!
>  Habe überhaupt keine Ahnung, wie ich heran gehen soll!
>  Ich weiß, dass Tr(A)=0 und det(A)=0, weil A nilpotent ist.
> Ich hab das bei p=3 und p=5 untersucht, das funktioniert,
> aber das bringt mich nicht weiter!!!

Geh wie folgt vor: nimm dir eine beliebige Matrix $M = [mm] \pmat{ a & c \\ b & d }$. [/mm] Diese ist genau dann nilpotent, wenn $a + c = 0$ ist und [mm] $\vek{ a \\ b }$ [/mm] und [mm] $\vek{ c \\ d }$ [/mm] linear abhaengig sind.

Jetzt mach eine Fallunterscheidung:

1. Fall: $(a, b) = (0, 0)$. Hier gibt es genau $p$ Matrizen die auftreten koennen.

2. Fall: $(a, b) [mm] \neq [/mm] (0, 0)$. In diesem Fall gibt es ein [mm] $\lambda \in \IF_p$ [/mm] mit $c = [mm] \lambda [/mm] a$, $d = [mm] \lambda [/mm] c$.

Zeige hier zuerst, dass $b [mm] \neq [/mm] 0$ ist, und dass fuer $b [mm] \neq [/mm] 0$ es genau eine Wahl fuer [mm] $\lambda$ [/mm] gibt. Daraus folgt: es gibt hier $p [mm] \cdot [/mm] (p - 1)$ Faelle.

Zusammen bekommst du also $p + p (p - 1) = [mm] p^2$ [/mm] nilpotente Matrizen. (Und den Tipp brauchst du gar nicht.)


Ein alternatives Vorgehen ist ueber die Jordansche Normalform zu gehen. Nilpotente Matrizen sind entweder die Nullmatrix oder aequivalent zu $A = [mm] \pmat{ 0 & 1 \\ 0 & 0 }$. [/mm] Wenn man jetzt ermitteln kann, wieviele Matrizen aequivalent zu $A$ sind, ist man fertig. Das ist allerdings nicht umbedingt gerade einfach ;-)

LG Felix


Bezug
                
Bezug
nilpotente Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Sa 23.05.2009
Autor: math101

Vielen-vielen dank, Felix!!!
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]