matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebranilpotent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - nilpotent
nilpotent < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nilpotent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Mo 21.05.2007
Autor: Imkeje

Aufgabe
Sei K ein kommutativer unitärer Ring, A eine K-Algebra, J ideal von A.
Man ziege:
Genau dann ist A nil, wenn J und J/A nil sind.

Hallo,
ALso A ist nil, wenn jedes Elemnt von A nilpotent ist, d.h. für alle [mm] a\inA [/mm] existiert ein [mm] n\in\IN [/mm] mit [mm] a^n=0. [/mm]
Wie kann ich nun zeigen,dass J und A/J nil sind?
Kann mir jemad helfen?
Imke

        
Bezug
nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mo 21.05.2007
Autor: felixf

Hallo Imke,

> Sei K ein kommutativer unitärer Ring, A eine K-Algebra, J
> ideal von A.
>  Man ziege:
>  Genau dann ist A nil, wenn J und J/A nil sind.
>  
>  ALso A ist nil, wenn jedes Elemnt von A nilpotent ist,
> d.h. für alle [mm]a\inA[/mm] existiert ein [mm]n\in\IN[/mm] mit [mm]a^n=0.[/mm]
>  Wie kann ich nun zeigen,dass J und A/J nil sind?

wenn  $A$ nil ist, dann gilt fuer jedes $a [mm] \in [/mm] A$, dass [mm] $a^n [/mm] = 0$ ist fuer ein gross genuges $n$.

Da nun $J [mm] \subseteq [/mm] A$ ist, gilt das natuerlich auch fuer jedes Element aus $J$. Damit ist $J$ nil.

Und wenn $a + J [mm] \in [/mm] A/J$ ist, dann ist $(a + [mm] J)^n [/mm] = [mm] a^n [/mm] + J$, womit fuer gross genuges $n$ dies ebenfalls gleich $0 + J = J$ ist, also das neutrale Element in $A/J$. Damit ist $A/J$ auch nil.

Zur anderen Richtung: Dass $A/J$ nil ist bedeutet, dass es zu jedem $a [mm] \in [/mm] A$ ein [mm] $m_1$ [/mm] gibt mit $(a + [mm] J)^{m_1} [/mm] = J$, also [mm] $a^{m_1} \in [/mm] J$. Und das $J$ nil ist bedeutet es, dass es zu jedem $a' [mm] \in [/mm] J$ ein [mm] $m_2 \in \N$ [/mm] gibt mit [mm] $(a')^{m_2} [/mm] = 0$.

Jetzt setz die beiden Aussagen mal zusammen; dann bekommst du, dass auch $A$ nil ist.

LG Felix


Bezug
                
Bezug
nilpotent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mo 21.05.2007
Autor: Imkeje

Hallo Felix,

vielen Dank für deine Antwort. Kannst du mir nochmal erklären, wenn also [mm] a^n [/mm] das neutrale Element in A/J ist, das dann A/J nil ist, muss nicht (a + [mm] J)^n [/mm] = 0 sein?
Das verstehe ich nicht.

Lg Imke


Bezug
                        
Bezug
nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 21.05.2007
Autor: felixf

Hallo Imke

> vielen Dank für deine Antwort. Kannst du mir nochmal
> erklären, wenn also [mm]a^n[/mm] das neutrale Element in A/J ist,
> das dann A/J nil ist, muss nicht (a + [mm]J)^n[/mm] = 0 sein?

Ja. Aber die 0 in $A/J$ ist ja gerade $J$. Also $(a + [mm] J)^n [/mm] = 0 [mm] \in [/mm] A/J$ bedeutet gerade, dass [mm] $a^n \in [/mm] J$ ist. Also per Definition.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]