matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebranichtkommutative gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - nichtkommutative gruppe
nichtkommutative gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtkommutative gruppe: brauche den anfang bitte!
Status: (Frage) überfällig Status 
Datum: 04:03 Do 02.11.2006
Autor: toggit

Aufgabe
für [mm] a,b,c,d\in \IR [/mm] definiert man die abbildung
[mm] f_{a,b,c,d}:\IR \times \IR \to \IR \times \IR,(x,y)\mapsto(ax+by,cx+dy) [/mm]
sei dann G={ [mm] f_{a,b,c,d}| a,b,c,d\in \IR, ad-bc\not=0 [/mm] }

a)
prüfen sie nach, dass [mm] (G;\circ) [/mm] eine nicht-kommutative gruppe ist, wobei [mm] f_{1,0,0,1} [/mm] neutrales element ist, und jedes [mm] f_{a,b,c,d}\inG [/mm] die inverse
[mm] {f^{-1}}_{a,b,c,d}=f_{a',b',c',d'} [/mm] hat, mit
[mm] a'=\bruch{d}{ad-bc}, b'=\bruch{-b}{ad-bc}, c'=\bruch{-c}{ad-bc}, d'=\bruch{a}{ad-bc}. [/mm]

b)
berechnen sie [mm] f_{2,1,1,1}\circ f_{1,0,1,1},{f^-1}_{2,1,1,1} [/mm] und [mm] f_{2,1,1,1}\circ f_{1,0,1,1}\circ {f^-1}_{2,1,1,1} [/mm]

c)
definiert man
[mm] H_{1}={f_{a,b,c,d}\in G|a,b,c,d \in \IR, und: ad-bc=1} [/mm]
und
[mm] H_{2}={f_{a,b,c,d}\in G|a,b,c,d \in \IZ, und: ad-bc=1}. [/mm]
zeigen sie, dass [mm] H_{1}\subseteq [/mm] G eine untergruppe von G ist, und dass [mm] H_{2}\subseteq H_{1} [/mm] eine untergruppe von [mm] H_{1} [/mm] ist.

erstmal hallo
und nun zu diese aufgabe,
weiß nicht welche Verknüpfung hier gemeint ist!!!

und zu a) teil muss ich denn nur assoziativgesetz beweisen und auf kommutativität prüfen oder lege ich da falsch?

zur b) wenn ich die verknüpfung nicht kenne weiss ich denn auch nicht wie ich dass berechnen soll

zur c)
reicht hier dass ad-bc=1 untergruppe von [mm] ad-bc\not=0 [/mm] ist  und [mm] \IZ [/mm] in [mm] \IR [/mm] enthalten ist?

bitte um schnelle hilfe, muss das schon morgen abgeben
danke mfg tom

        
Bezug
nichtkommutative gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Do 02.11.2006
Autor: mathiash

Hallo und guten Morgen,

> für [mm]a,b,c,d\in \IR[/mm] definiert man die abbildung
>  [mm]f_{a,b,c,d}:\IR \times \IR \to \IR \times \IR,(x,y)\mapsto(ax+by,cx+dy)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> sei dann G={ [mm]f_{a,b,c,d}| a,b,c,d\in \IR, ad-bc\not=0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> a)
> prüfen sie nach, dass [mm](G;\circ)[/mm] eine nicht-kommutative
> gruppe ist, wobei [mm]f_{1,0,0,1}[/mm] neutrales element ist, und
> jedes [mm]f_{a,b,c,d}\inG[/mm] die inverse
> [mm]{f^{-1}}_{a,b,c,d}=f_{a',b',c',d'}[/mm] hat, mit
>  [mm]a'=\bruch{d}{ad-bc}, b'=\bruch{-b}{ad-bc}, c'=\bruch{-c}{ad-bc}, d'=\bruch{a}{ad-bc}.[/mm]
>  

Die Verknüpfung ist die Hintereinanderschaltung (Komposition) von Funktionen:

[mm] f\circ [/mm] g  (x)=f(g(x))

Zu zeigen ist nur, dass diese Menge abgeschlossen unter Komposition und Inversenbildung ist und dass sie
die Identität enthält, da allgemein schon die Menge aller bij. Abb. einer Menge X in sich eine Gruppe mit der Komposition als Gruppenoperation ist.

Zur Nichtkommutativität musst Du halt zwei Funktionen f,g aus G angeben, so dass [mm] f\circ [/mm] g [mm] \neq g\circ [/mm] f gilt.

Hilft das für den Anfang schon mal weiter ?

Gruss,

Mathias

> b)
>  berechnen sie [mm]f_{2,1,1,1}\circ f_{1,0,1,1},{f^-1}_{2,1,1,1}[/mm]
> und [mm]f_{2,1,1,1}\circ f_{1,0,1,1}\circ {f^-1}_{2,1,1,1}[/mm]
>  
> c)
>  definiert man
>  [mm]H_{1}={f_{a,b,c,d}\in G|a,b,c,d \in \IR, und: ad-bc=1}[/mm]
>  
> und
> [mm]H_{2}={f_{a,b,c,d}\in G|a,b,c,d \in \IZ, und: ad-bc=1}.[/mm]
>  
> zeigen sie, dass [mm]H_{1}\subseteq[/mm] G eine untergruppe von G
> ist, und dass [mm]H_{2}\subseteq H_{1}[/mm] eine untergruppe von
> [mm]H_{1}[/mm] ist.
>  erstmal hallo
>  und nun zu diese aufgabe,
> weiß nicht welche Verknüpfung hier gemeint ist!!!
>  
> und zu a) teil muss ich denn nur assoziativgesetz beweisen
> und auf kommutativität prüfen oder lege ich da falsch?
>  
> zur b) wenn ich die verknüpfung nicht kenne weiss ich denn
> auch nicht wie ich dass berechnen soll
>  
> zur c)
>  reicht hier dass ad-bc=1 untergruppe von [mm]ad-bc\not=0[/mm] ist  
> und [mm]\IZ[/mm] in [mm]\IR[/mm] enthalten ist?
>  
> bitte um schnelle hilfe, muss das schon morgen abgeben
>  danke mfg tom

Bezug
        
Bezug
nichtkommutative gruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:05 Sa 04.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]