matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichennicht stetig zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - nicht stetig zeigen
nicht stetig zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht stetig zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mo 03.11.2014
Autor: Trikolon

Aufgabe
S.u.

Keine konkrete  Aufgabe, sondern nur eine Frage:  wenn ich bei einer zweidimensionalen Funktion zeigen soll, dass sie nicht stetig ist, wähle ich ja zwei konkrete Nullfolgen und zeifedass der GGrenzwert ungleich dem Funktionswert ist.  Kann ich dazu z.B. auch (1/n,0) wählen?  Also darf man eine Komponente 0 setzen?

        
Bezug
nicht stetig zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Mo 03.11.2014
Autor: andyv

Hallo,

wenn die Folge im Definitionsbereich der Funktion liegt, sehe ich keine Probleme.

Liebe Grüße

Bezug
                
Bezug
nicht stetig zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Fr 07.11.2014
Autor: Trikolon

Ich mache mal ein konkretes Beispiel:

Ich will zeigen, dass [mm] f(x)=2xsin((x^2+y^2)^{-0,5})-\bruch{x}{\wurzel{x^2+y^2}}cos((x^2+y^2)^{-0,5}) [/mm] nicht stetig ist in (0,0) (wobei f(0,0)=0.

Kann ich jetzt z.B. f(x,0) betrachten? Und dann x gg 0 gehen lassen?
Der entstehende GW existiert ja nicht. Wobei ich nicht genau weiß, wie ich das mathematisch begründen soll...

Bezug
                        
Bezug
nicht stetig zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Fr 07.11.2014
Autor: steppenhahn

Hallo,

> Ich mache mal ein konkretes Beispiel:
>  
> Ich will zeigen, dass
> [mm]f(x)=2xsin((x^2+y^2)^{-0,5})-\bruch{x}{\wurzel{x^2+y^2}}cos((x^2+y^2)^{-0,5})[/mm]
> nicht stetig ist in (0,0) (wobei f(0,0)=0.
>  
> Kann ich jetzt z.B. f(x,0) betrachten? Und dann x gg 0
> gehen lassen?

Ja, das kannst du tun. Die Funktion ist ja nur für $(x,y) = (0,0)$ nicht definiert.

> Der entstehende GW existiert ja nicht. Wobei ich nicht
> genau weiß, wie ich das mathematisch begründen soll...  

Stetigkeit ist definiert als [mm] $\lim_{x\to x_0}f(x) [/mm] = [mm] f(x_0)$. [/mm] Das sind zwei Aussagen, nämlich:
1. Der Limes auf der linken Seite existiert
2. Der Limes ist gleich dem Wert auf der rechten Seite.

Du kannst also Stetigkeit auch durch Nichtexistenz des Limes widerlegen. Dazu kannst du zwei verschiedene Folgen [mm] $x_n, y_n$ [/mm] betrachten. Gilt [mm] $\lim_{n\to\infty}f(x_n) \not= \lim_{n\to\infty}f(y_n)$, [/mm] kann der Limes nicht existieren.

Betrachte zum Beispiel einmal $f(1/n,0)$ und einmal $f(-1/n,0)$. Was erhältst du jeweils als Limes?

Viele Grüße,
Stefan

Bezug
                        
Bezug
nicht stetig zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Fr 07.11.2014
Autor: fred97


> Ich mache mal ein konkretes Beispiel:
>  
> Ich will zeigen, dass
> [mm]f(x)=2xsin((x^2+y^2)^{-0,5})-\bruch{x}{\wurzel{x^2+y^2}}cos((x^2+y^2)^{-0,5})[/mm]
> nicht stetig ist in (0,0) (wobei f(0,0)=0.
>  
> Kann ich jetzt z.B. f(x,0) betrachten? Und dann x gg 0
> gehen lassen?
> Der entstehende GW existiert ja nicht. Wobei ich nicht
> genau weiß, wie ich das mathematisch begründen soll...  

Berechne mal [mm] f(\bruch{1}{n^2* \pi^2},0) [/mm]  und schau, was passiert, wenn n [mm] \to \infty [/mm] geht.

FRED

Bezug
                                
Bezug
nicht stetig zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Fr 07.11.2014
Autor: Trikolon

[mm] f(\bruch{1}{n^2\cdot{} \pi^2},0) [/mm] = -1 für n gg unendlich , oder?

Bezug
                                        
Bezug
nicht stetig zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Fr 07.11.2014
Autor: fred97


>  [mm]f(\bruch{1}{n^2\cdot{} \pi^2},0)[/mm] = -1 für n gg unendlich
> , oder?

Nein. Rechne nochmal.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]