matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichennicht stetig in 0 (Richtungsab
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - nicht stetig in 0 (Richtungsab
nicht stetig in 0 (Richtungsab < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht stetig in 0 (Richtungsab: leitungen existieren?)
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 21.06.2007
Autor: CPH

Aufgabe
Zeige, dass die Funktion f : [mm] R^2 \to [/mm] R mit f(0, 0) = 0 und
f(x, y) [mm] =\bruch{xy^2}{x^2 + y^4} [/mm]
für (x, y) [mm] \not= [/mm] (0, 0)
im Nullpunkt unstetig ist, aber dort Ableitungen in jeder Richtung hat. Skizziere den Graphen
von f in [mm] R^3 [/mm] mit einem Plotprogramm.

Hallo,
Das mit der unstetigkeit müsste ich irgendwie hinhriegen

Ich nehme einfach an, es ist stetig, betrachte einen Grenzwert gegen 0 und stelle dann fest, dass es unstetig ist.

Aber wie soll man zeigen,  dass " dort Ableitungen in jeder Richtung " existieren.

im eindimensionalen Fall würd ich doch sagen "nicht stetig => nicht diffbar".


Mfg

CPH

        
Bezug
nicht stetig in 0 (Richtungsab: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 Fr 22.06.2007
Autor: Somebody


> Zeige, dass die Funktion f : [mm]R^2 \to[/mm] R mit f(0, 0) = 0 und
>  f(x, y) [mm]=\bruch{xy^2}{x^2 + y^4}[/mm]
>  für (x, y) [mm]\not=[/mm] (0, 0)
>  im Nullpunkt unstetig ist, aber dort Ableitungen in jeder
> Richtung hat. Skizziere den Graphen
>  von f in [mm]R^3[/mm] mit einem Plotprogramm.
>  Hallo,
>  Das mit der unstetigkeit müsste ich irgendwie hinhriegen
>  
> Ich nehme einfach an, es ist stetig, betrachte einen
> Grenzwert gegen 0 und stelle dann fest, dass es unstetig
> ist.

Z.B. ist [mm]\lim_{n\rightarrow\infty}f\big(\frac{1}{n^2},\frac{1}{n}\big) = \frac{1}{2}\neq 0[/mm].

> Aber wie soll man zeigen,  dass " dort Ableitungen in jeder
> Richtung " existieren.

Betrachte [mm]x=r\cos(\varphi), y=r\cos(\varphi)[/mm] und lasse, bei festem [mm]\varphi[/mm], d.h. bei festgehaltener Richtung, [mm]r\rightarrow 0[/mm] gehen.
  

> im eindimensionalen Fall würd ich doch sagen "nicht stetig
> => nicht diffbar".

Das stimmt hier auch: behauptet wird ja nur, dass die Richtungsableitungen existieren. Wenn man die Funktion auf eine bestimmte Richtung einschränkt, dann ist sie ebenfalls stetig. Betrachtet man
[mm]f(r\cos(\varphi),r\sin(\varphi))=\frac{r^3\cos(\varphi)\sin^2(\varphi)}{r^2\cos^2(\varphi)+r^4\sin^4\varphi)}[/mm]

gibt es zwei Möglichkeiten: entweder ist [mm]\cos(\varphi)= 0[/mm], dann ist [mm]f(r\cos(\varphi),r\sin(\varphi)) = 0[/mm], für alle [mm]r[/mm], oder es ist [mm]\cos(\varphi)\neq 0[/mm], dann haben wir
[mm]\lim_{r\rightarrow 0}\frac{r^3\cos(\varphi)\sin^2(\varphi)}{r^2\cos^2(\varphi)+r^2\sin^2(\varphi)} = \lim_{r\rightarrow 0}\frac{r\cos(\varphi)\sin^2(\varphi)}{\cos^2(\varphi)+r^2\sin^4(\varphi)} = 0[/mm]

Die Folge [mm](x_n,y_n) := \big(\frac{1}{n^2},\frac{1}{n}\big)[/mm], mit der die Stetigkeit im Ursprung wiederlegt werden kann, kommt eben nicht aus konstanter Richtung gegen [mm](0,0)[/mm].

Bezug
                
Bezug
nicht stetig in 0 (Richtungsab: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Di 03.07.2007
Autor: CPH

Hallo, vielen Dank, wenn auch recht spät, bin erst jetzt dazu gekommen mich wieder mit der Aufgabe zu beschäftigen.

MfG
CPH

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]