matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionnatürliche Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - natürliche Zahlen
natürliche Zahlen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

natürliche Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 06.11.2007
Autor: trivialesmathe

Aufgabe
Berechnen sie für natürliche Zahlen m, n und q:
a) [mm] \summe_{i=0}^{n} q^i [/mm]

b) [mm] \summe_{i=0}^{m}\summe_{j=0}^{n} 2^i+j [/mm]

Hallo,
ich weiß bei dieser Aufgabe wirklich nicht weiter. kann mir jemand dabei helfen?
Ich weiß überhaupt nciht, wie ich anfangensoll. Schon mal vielen, vielen Dank und LG...

        
Bezug
natürliche Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Di 06.11.2007
Autor: koepper

Hallo,

> Berechnen sie für natürliche Zahlen m, n und q:
>  a) [mm]\summe_{i=0}^{n} q^i[/mm]

Stelle eine Gleichung auf, indem du diese ganze Summe x nennst, multipliziere diese Gleichung dann auf beiden Seiten mit q. Diese Gleichung ziehst du dann von der ursprünglichen Gleichung ab. Das Summenzeichen geht dabei weg und den Rest kannst du nach x auflösen.
  

> b) [mm]\summe_{i=0}^{m}\summe_{j=0}^{n} 2^i+j[/mm]

Hier mußt du nur die Summengesetze bei der zweiten Summe anwenden:

[mm] $\sum_{j=0}^n [/mm] a + b = [mm] \sum_{j=0}^n [/mm] a + [mm] \sum_{j=0}^n [/mm] b$

[mm] $\sum_{j=0}^n [/mm] c = (n+1)* c$ wenn c nicht von j abhängt.

[mm] $\sum_{j=0}^n [/mm] j = [mm] \frac{1}{2} [/mm] * n * (n+1)$

danach kannst du noch dein Ergebnis aus a.) anwenden.

LG
Will

Bezug
                
Bezug
natürliche Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 08.11.2007
Autor: MaRaQ

Kleine Variation der Aufgabe, möglicherweise ein Fehler im Aufgabentext, wie auch immer, ich stehe vor der identischen Aufgabe, bloß mit

[mm] \summe_{i=0}^{m}\summe_{j=0}^{n} 2^{i+j}. [/mm]

So, hier helfen mir zumindest die oben genannten Summengesetze nicht entscheidend weiter - oder übersehe ich da etwas?

Wie gehe ich vor?

Bezug
                        
Bezug
natürliche Zahlen: ausklammern
Status: (Antwort) fertig Status 
Datum: 16:34 Do 08.11.2007
Autor: Roadrunner

Hallo MaRaQ!


Du kannst hier ausklammern:

[mm] $$\summe_{i=0}^{m}\left(\summe_{j=0}^{n} 2^{i+j}\right) [/mm] \ = \ [mm] \summe_{i=0}^{m}\left[\summe_{j=0}^{n} \left(2^{i}*2^{j}\right)\right] [/mm] \ = \ [mm] \summe_{i=0}^{m}\left(2^{i}*\summe_{j=0}^{n} 2^{j}\right) [/mm] \ = \ ...$$

Für die hintere Summe kannst Du nun die Formel für die geometrische Reihe einsetzen ...


Gruß vom
Roadrunner


Bezug
                                
Bezug
natürliche Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Do 08.11.2007
Autor: MaRaQ

Danke. Ich denke, ich habe das jetzt so weit verstanden und gelöst...

Mein Ergebnis nach etlichen Umformungen ist
(...) = [mm] 2^{n+m+2} [/mm] - [mm] 2^{n+1} [/mm] - [mm] 2^{m+1} [/mm] + 1

Das nachzurechnen möchte ich jetzt keinem zumuten - da ich grade auch zu träge bin, die kompletten Gleichungen mit all diesen Potenzen und Summenzeichen zu übertragen... ;)

Etwas schöner geschrieben: [mm] (2^{n+1} -1)(2^{m+1} [/mm] - 1).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]