matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionennatürliche Logarithmusfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - natürliche Logarithmusfunktion
natürliche Logarithmusfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

natürliche Logarithmusfunktion: Stammfunktion ermitteln
Status: (Frage) beantwortet Status 
Datum: 18:19 Mo 13.11.2006
Autor: Blaub33r3

Aufgabe
Ermitteln Sie die Stammfunktion f(t) = [mm] \bruch{3}{2-5t} [/mm]

Hi Leute!!!

Kann ich den Bruch irgendwie auseinander ziehen??
(Bruchrechnen = Hilfe)^^
Hm oder wie kann ich sonst geeignet die Stammfunktion ermitteln?


Gruss b33r3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
natürliche Logarithmusfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Mo 13.11.2006
Autor: Zwerglein

Hi, Blaub33r3,

Wenn Du f(x) = [mm] \bruch{-5}{2-5t} [/mm] hättest, wäre (sagen wir für t < 0,4)

ln(2-5t) + c als Stammfunktion brauchbar.

Du brauchst also lediglich eine Konstante k so, dass

f(x) = [mm] k*\bruch{-5}{2-5t} [/mm] ist.
(Stammfunktion ist dann natürlich k*ln(2-5t) + c)

Dieses k zu ermitteln - das schaffst Du sicher!

mfG!
Zwerglein

Bezug
                
Bezug
natürliche Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Mo 13.11.2006
Autor: Blaub33r3

Hm...ja im Prinzip verstehe ich warum du t < 0,6 gemacht hast..aber verstehe sonst überhaupt nicht deinen gedankengang...

In der Schule hatten wir nen ähnliches beispiel(hab ich gerade gefunden)

f(x) = [mm] \bruch{2}{x-1} [/mm]

da habn wir einfach die 2 als faktor vor dem bruch geschoben
F(x) war dann -->
F(x) = 2 * ln |x-1| + c

deshalb hatte ich in meiner Aufgabe jetz auch raus
F(t) = 3 * ln | 2-5t | + C

is das falsch??? ^^ #
gruss

Bezug
                        
Bezug
natürliche Logarithmusfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 13.11.2006
Autor: Zwerglein

Hi, Blaubeere,

> Hm...ja im Prinzip verstehe ich warum du t < 0,6 gemacht
> hast..aber verstehe sonst überhaupt nicht deinen
> gedankengang...
>  
> In der Schule hatten wir nen ähnliches beispiel(hab ich
> gerade gefunden)
>  
> f(x) = [mm]\bruch{2}{x-1}[/mm]
>
> da habn wir einfach die 2 als faktor vor dem bruch
> geschoben
> F(x) war dann -->
>  F(x) = 2 * ln |x-1| + c

Das geht deswegen so einfach, weil die Ableitung des Nenners, also n(x) = x-1, einfach 1 ergibt.
Du brauchst demnach, wenn Du den ln als Stammfunktion kriegst, immer einen Bruch der Form:

f(x) = [mm] \bruch{n'(x)}{n(x)}, [/mm] d.h. der Zähler muss die Ableitung des Nenners sein!

In Deinem Beispiel ist die Ableitung des Nenners aber nicht 1, sondern -3; demnach benötigst Du einen Bruchterm der Form [mm] \bruch{-5}{2-5x} [/mm] (wobei ich die Variable mal einfach x nenne!)

(By the way: Ich merke grade, dass ich in meiner ersten Antwort "3-5t" statt "2-5t" geschrieben habe - ich bessere das gleich aus! Hoffe, das hat Dich nicht allzu sehr irritiert!)

> deshalb hatte ich in meiner Aufgabe jetzt auch raus
>  F(t) = 3 * ln | 2-5t | + C
>  
> is das falsch??? ^^ #

Kannst es ja mal ableiten:

F'(t) = [mm] 3*\bruch{1}{2-5t}*(-5) [/mm] = [mm] \bruch{-15}{2-5t} [/mm]
Das ist nicht der gewünschte Funktionsterm f(t): Bei dem stand ja die 3 im Zähler.
Also musst Du Dir die Konstante neu überlegen!

Und zu der Schreibweise mit dem Betrag ist zu sagen: Der Betrag nützt gar nichts: Es ist nicht möglich, die Menge ALLER Stammfunktionen auf diese Weise zu schreiben (auch wenn es in vielen Lehrbüchern so steht!)
Aber diese "Spitzfindigkeit" will ich Dir hier ersparen: Wenn Du's so gelernt hast, mach's weiter so!

mfG!
Zwerglein

Bezug
                                
Bezug
natürliche Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 13.11.2006
Autor: Blaub33r3

Das war meine aufg : $ [mm] \bruch{3}{2-5t} [/mm] $

und das muss ich irgendwie in den natürlichen logarithmus bringen...aber irgendwie verstehe ich die eigentlich erklärung nicht, hab wohl verstanden dass es mit der ersten aufgabe nix zutun hatte wegen, wegen der ableitung..aber trotzdem will ich auch kein t ausrechnen oder so..ich will einfach ne stink normal komische stammfunktion^^?? nur ich weiss nicht was ich mit dem bruch machen soll!!...

kannste mir das bitte an meinem beispiel zeigen und NICHT mit
$ [mm] \bruch{-5}{2-5t} [/mm] $ (oder hatte das -5 nen sinn??)  gibbet da nich noch ne regel für oder so für meine aufgabe??? irgendwie check ich das nich... sry

gruss b33r3^^


Bezug
                                        
Bezug
natürliche Logarithmusfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 13.11.2006
Autor: Zwerglein

Hi, Blaubeere,

das beste wird sein, ich geb' Dir einfach die Lösung an und Du überlegst Du das alles noch mal.

[mm] \integral{\bruch{3}{2-5t} dt} [/mm] = [mm] -\bruch{3}{5}*ln|2-5t| [/mm] + c      (für x < 0,4 oder für x > 0,4)

mfG!
Zwerglein

(PS: Wie Du siehst, spielt die "-5" als Ableitung des Nenners eine ganz gewaltige Rolle bei der Aufgabe; stünde die an Stelle der 3 im Zähler, wär' der ganze Aufwand unnötig!)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]